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FREE PRODUCTS OF TOPOLOGICAL GROUPS
WHICH ARE &, -SPACES

BY

EDWARD T. ORDMAN

ABSTRACT. Let G and H be topological groups and G * H their free prod-
uct topologized in the manner due to Graev. The topological space G * H is
studied, largely by means of its compact subsets. It is established that if G
and H are k ~spaces (respectively: countable CW-complexes) then so is G * H.
These results extend to countably infinite free products. If G and H are k-
spaces, G * H is neither locally compact nor metrizable, provided G is nondis-
crete and H is nontrivial. Incomplete results are obtained about the fundamental
group (G * H). If G1 and Hl are quotients (continuous open homomorphic
images) of G and H, then G, * H, is a quotient of G * H.

1. Introduction. In [4], Graev observed that the algebraic free product G * H
of two Hausdorff topological groups G and H could be equipped with a topology
making it a Hausdorff topological group and satisfying the appropriate conditions
for a free product (coproduct) in the category of topological groups; see also [9],
[12]. This topology on G * H is the finest topology making G * H a topological
group and inducing the original topology on G and H considered as subgroups.

While Hulanicki [5] constructed a compact coproduct by working in the category
of compact groups, Ordman [13] proved that the Graev-type free product (the only
one we will be concerned with) is never compact. Results there, together with
those of Morris [10], [11] made considerable progress in establishing conditions
under which free products fail to be locally compact. The first positive results
concerning compactness were also contained in [11]: the free product of finitely
many locally compact groups is a k-space (for information on k-spaces, see [2],
(8], [14D.

Our principal goal is to establish and apply further positive results relating
to compactness. We extend the above-mentioned result of Morris to show
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62 E. T. ORDMAN

(Theorem 3.2) that a free product of countably many topological groups which are
k,-spaces is again a k_-space (for the definition of & rspace, see $3). These seem
a very useful class of spaces, since they are also closed under quotients and
direct products. We apply this result in S4 by showing that free products of & -
spaces are neither locally compact nor metrizable, with best possible connected-
ness conditions (one factor nondiscrete, one nontrivial).

In §5 we prove (Theorem 5.3) that if each of countably many topological groups
is a CW-complex with countably many cells, so is their free product. As an example
we discuss S! * S, the free product of two circle groups. In a very natural way,
it is a CW-complex with two cells in each nonzero dimension, and fundamental
group isomorphic to that of the torus.

In §6 we make the conjecture that if G and H are topological groups, the fun-
damental groups (G * H) and (G x H) are equal. We prove in general that the latter is a
direct factor of the former, but establish equality only for a limited class of CW-complexes.

Finally, in §7, we establish one more analogy between the free product and
direct product by observing that a free product of open continuous homomorphisms
is again open.

2. Notation and preliminaries. Throughout this paper, the letters G and H will
denote Hausdorff topological groups and G * H their topological free product in
the sense of [4], [9], [12]. e will be the identity of any group. G' will denote
G\ {e}, the set of nonidentity elements of G, and H' will denote H\{e}. An expo-
nent in an appropriate context will denote direct product; e.g., (G x H)" = (G x H)
xe+ox (G x H).

IfGxHxGx-++xGxH is any finite alternating direct product of G and H
(which may begin or end with either) we define i: Gx Hx+++x Gx H— G * H by

l(gl, hl, M ] gn, bﬂ)=glbl IO g”bn.

Clearly i is a continuous map of topological spaces (although not a group homo-
morphism) since multiplication is jointly continuous in G * H. Since i(G) is homeo~
morphic to G and #(H) to H, our notation will confuse them when convenient. We
define p,: G * H— G by p,(g,h, -+ -g,h,) =g, -8, it is a continuous homo-
morphism. So are the similarly defined maps p,: G* H—H and p; xp,: G*x H —
G x H.

Lemma 2.1. i: G x H — G x H) is a homeomorphism.

Proof. It has inverse, p, x p,.

So i is a homeomorphism on the sets G, H, G x H, and analogously H x G. i is not
a one-to-one map of G x Hx G into G * H, for {g,, e, g,) =g 8, e, €). On the other
hand, i is one-to-one when restricted to a set of the general form (G’ x H")?, since i car-
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ries each element of such a set to a distinct reduced word (in this particular case, of
length 27) in G * H. It seems reasonable to conjecture that i restricted to such a set
is a homeomorphism., We are able to prove this only for a more restricted class of domains,

Lemma 2.2. Let A C(G' x H')" and suppose A has compact closure in (G x H)™
Then i: A — G x H is a homeomorphism onto i(A).

Proof. By the remarks above, i is continuous and one-to-one. That its inverse
is continuous is a variant of the well-known fact about mappings of compact Haus-
dorff spaces into Hausdorff spaces. Suppose B is a subset of i(A) and i~1(B) N A
is relatively open in A. Then i~!}(B) = By N A for some set B, open in cl(A).
Since cl(4)\ B, is then closed and hence compact, its'image z(cl (A\B o) is com-
pact and hence closed; thus #(4)\ i(cl (A)\B ) is open in i(A). We will see B =
AN\ i(cl (A)\B ). For, if b € B, b= i(a) umquely and we need only show a ¢
cl (A)\B But 2 €i~1(B) C B, completing the argument. Conversely, if x €
A\ #(cl (A)\B ), % = i(a) for some

a€ A\(cl(A\Bg) = A N B, = i~ !(B),

so x € B. Thus B is equal to the open set A\ i(cl (AN Bo) whenever i~1(B) N A
is open, and i is a homeomorphism of A.

It will occasionally be useful to talk of the free product II*G o of a (finite or
infinite) collection of Hausdorff topological groups G, for o in some index set A.
The following lemma is Theorem 2.5 of [9].

Lemma 2.3. Let B be a subset of the index set A. The subgroup of II*G
a €A, generated by the union of the z(Gﬁ) B €B, is (1) closed, and (2) homeomor~
phically isomorphic to TI* Gg B €B.

Proof. Let F; denote the free product for & € A and F, that for B € B. Let
c: F) — F, be the inclusion map and define 0: F, — F, by extending o(g) = g
for g EGﬁ, B €B,and o(g)=¢ forg €G,, a € A\B. Now oc: F, — F, is the
identity map so c is a homeomorphic isomorphism into; o(F)) is closed in F; since

it is the kernel of the continuous map x — o (x)x~! from F, to F,.

3. k -spaces. We shall call a topological space X o-compact if X = U X, (n=
1,2,-.+) with each X, a compact subset of X. Note that X is not required to be
locally compact. Clearly the X, may be chosen so that X, CX, for k<m,and
will be assumed to be so chosen.

A o-compact topological space is called a k -space with respect to the decom-
position X = |J X » provided than any A C X is closed whenever A N X, is com-
pact for every n. The decomposition is essential to the statement, in that some
other g-compact decomposition might not satisfy the condition on closed sets. For
information on k -spaces, see [6], [8], [14].
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Theorem 3.1. A finite or countable free product of topological groups is o-
compact if and only if the factors are.

Proof. If. If G=U GoH=UH_ (n=1,2,...) display G and H as increas-
ing unions of compact subsets, define K, C G * H to be the subset of G * H con-
sisting of all elements expressible as products of n elements of G, U H . Then
K, =i((Gn U Hn)"), so K is compact; clearly G x H = U K, (n=1,2,...). In the
countable case, if the factors are denoted Gi (i=1,2,...), and if Gl. =U Gi,n
(n=1,2,...) is an appropriate decomposition, K may be chosen as
i((Gl,n UeeaU Gn,n)n)'

Only if. If the free product is a k -space, each factor must be a k -space
since it is (homeomorphic under i to) a closed subgroup by Lemma 2.3.

To prove that the free product of topological groups which are k -spaces is
again a k -space, we must show that if a subset A of (e.g.) G * H has compact
intersection with each K as defined in the above proof, then A is closed in
G * H. Morris [11] observed that Theorem 4 of Graev [3] implicitly proves that a
free product of locally compact groups is a k-space (and in fact a k -space). We
now observe that the same argument works in the present situation. In fact, paral-
leling Graev, we topologize K as a quotient of (Gn U Hn)", and topologize G * H
with a topology 7, defined by letting U be open in G * H whenever UN K is
relatively open in each K . It is easy to check that 7) makes G * H a topological
space with a topology at least as fine as the free product of topological groups
topology 7, and induces the original topology on G and H (i.e., 7, restricted to
i(G) is homeomorphic to the original topology on G). It remains to check that 7,
makes G * H a topological group. The confirmation of this is word-for-word as in
Graev’s proof of Theorem 4 except for the substitution of K for F, and G *H for
F(X). Again, there is no extra work in extending to countable products. This shows
not only that the free product is a k,-space, but that the sets {(G, U H )") and
(G, R VG YU Gn’n)") respectively are the proper compact sets to deter-
mine the topology. The theorem we obtain is

Theorem 3.2. If the topological spaces Gy G2, 63,- «« are k,-spaces, then
so is H*Gn (n=1,2,...). If Gi =U Gi,n is an appropriate decomposition of G,
for each i, the product may appropriately be decomposed as \J(G 1,,Y Gz'n Ueer U Gnm)".

Conversely, when a free product of topological groups is a k space, so is
each factor; for each factor is a closed subset of the product, and closed subspaces
of k, -spaces are k rspaces.

Note. The above proof has been substantially improved. Theorem 3.2 is in
fact an easy corollary of Theorem 1 of J. Mack, S. A. Morris and E. T. Ordman,
Free topological groups and the projective dimension of a locally compact abelian
group [Proc. Amer. Math. Soc. 40 (1973), 303-308].
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3.3. It is natural to ask whether the free product of two topological groups
which are k-spaces must be a k-space. To show this is not always true it will
suffice to find k-spaces G and H, both topological groups, for which G x H is
not a k-space; then G * H could not be a k-space since py*xpy G¥xH—GxH
is an open map and carries k-spaces to k-spaces. Examples are known of two
topological spaces which are k-spaces but whose product is not a k-space; see
[1], [2]. The example in [2, pp. 132—133] involves a homogeneous space with an
addition but the addition is not jointly continuous (p. 416). In a subsequent paper,
it will be shown that if G is the free product of two circle groups and H is the addi-
tive group of rationals, G and H are k-spaces but G x H (and G * H) are not
k-spaces.

3.4. The difficulty of 3.3 suggests strongly the desirability of carrying out a
program like the present one in the category of k-spaces rather than in the category
of topological spaces. [Note added: some of this has now been done: see, e.g.,

E. C. Nummela, The projective dimension of an abelian K-group, Proc. Amer. Math.
Soc. (to appear).] McCord [7] develops a construction yielding many highly appli-
cable groups whose operations are continuous in the former category. $7 of that
paper may be used to construct groups which are k-spaces but whose direct prod-
ucts are not k-spaces; the difficulty lies in determining whether these are topolo-
gical groups in the traditional sense.

3.5. Every locally compact group is a k-space, since a locally compact space
is a k-space.

Every locally compact connected group is a k,-space. This follows from [11],
but may be proven easily. Let G be locally compact and connected, and let N be
a compact neighborhood of e. Then the subgroup of G generated by N is an open
and closed subgroup, hence equal to G; hence G=UN"? (n=1,2,...). Thus G
is o-compact. We show that if A NN™ is compact for each 7, A is closed. Let
x € cl(A); then for some 7, x € c1(A) N N™. Let {xs} be a net in A converging to
x; then eventually x5 is in xN CN"N = N?*!, Thus x ecl(A N N**) = 4N N7+
so x €A.

Further, if G is any locally compact group, G has an open and closed sub-
group H which is a k -space. For let N be an open neighborhood of e in G such
that x € N implies x~! € N and cl(N) is compact. Then H = N" = U cl(N)"
is o-compact. If a € cl (H)\H, there is a net {x8¥ in H converging to a. Now
eventually some x5 is in Na. But that x5 is in some N”, so a € N™+1 C H. Hence
H is an open and closed subgroup. The confirmation that H is a k,rspace is

exactly as in the above paragraph.

4. Local compactness and metrizability of k-spaces. In [10] and [11], Morris
proves that a free product of topological groups fails to be locally compact pro-
vided it is an infinite product of groups which are not totally disconnected, or a
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finite product of connected groups. It is conjectured that a free product of nondis-
crete groups is not locally compact (clearly, a free product of discrete groups is
discrete and thus locally compact). We are able to eliminate the excess connectivity
requirements, at the cost of insisting that two factors be k -spaces.

Lemma 4.1. Let X =U Xn be a k rspace, and let C be a compact subset of
X. Then C is contained in some Xn.

Proof. This is a special case of Lemma 9.3 of [14].

Theorem 4.2, Let F = H*Ga, a €A, be any free product of topological groups.
Suppose at least one factor is a nondiscrete k -space, G, and at least one other
factor is a nontrivial k -space, H. Then F is not locally compact.

Proof. If F were locally compact, its closed subgroup (by 2.3) G * H would
alsobe. Let G=U G, and H= U H_ be decompositions of G and H ask,-
spaces, so that G *x H= U (G_ U H )" is a decomposition of G * H as a k,space.
Let C be a compact neighborhood of e in G * H. By Lemma 4.1, C is contained
in some (Gn v Hn)”, and thus has no words of length exceeding n. But by Propo-
sition 1 of [12], any neighborhood of e in G * H contains words of arbitrary length.
Thus e can have no compact neighborhood.

Under similar hypotheses, we can settle the problem of metrizability.

Lemma 4.3. If a topological space X is a k, -space, and some point x € X
bas no compact neighborhood, then X is not [irst countable at x.

Proof. Let X=U X, be an appropriate decomposition of X, and suppose
U, (r=1,2,--+) is a base for the neighborhood system at x with U, D U for
r<s. No U_ is contained in any X, for if it were then c1(U) would be a com-
pact neighborhood of x. For each n=1,2,¢.., pick a point x_ # x such that
x, € Un\xn, The set {x |7 =1,2,.-} has finite intersection with each X _, so
it is closed in the k -space X; on the other hand it intersects every neighborhood
of x. This contradiction shows that no countable base can exist at x.

Theorem 4.4. Let F satisfy the same bypotheses as in Theorem 4.2. Then
F is not metrizable.

Proof. If F were metrizable, its subgroup G * H would be. But G * H is a
k,-space by 3.2 and not locally compact by 4.2; hence by 4.3, it is not metrizable.
4.5. Note. Subsequently to the initial submission of this paper, Theorems 4.2
and 4.4 were generalized, by S. A. Morris and the author, eliminating the require-
ment that G and H be k -spaces. This generalization proceeded via a study of
commutators: gp([G, H]), the group generated in G * H by words of the form
g b lep.
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Two other natural approaches still present themselves. Proposition 1 of [12]
asserts that in general, open sets contain very long words. It is possible that com-
pact sets in free products in general, and not just in k -spaces, contain words of
bounded length only. A more interesting approach may be motivated by the remarks
in 3.5. Suppose G and H are locally compact groups; let G, and H, respectively
be subgroups which are & -spaces and both open and closed. If the natural map
G, * Hy — G * H carried G * H, homeomorphically onto a closed subgroup of

G * H, then G, * H ) would be locally compact as a closed subgroup, but not
locally compact by 4.2. Thus, some sort of relative result resembling 7.2 might

suffice.

While it is possible that ‘‘a free product of subgroups is a subgroup of the free
product’’, a stronger result analogous to the full Kurosh subgroup theorem is not
to be expected. In $13 of Graev [3], it is shown that a subgroup of a free topolo-
gical group is not necessarily again a free topological group.

4.6. Theorem 4.4 guarantees us in particular that the metric topology on the
free product S! *S! of two circle groups, considered in [12], [13], is not the free
product topology. It also follows that the pseudometric topology constructed by
Graev [4] is in general too coarse to be the free product topology.

5. CW-complexes. We begin with a discussion of closure-finite cell complexes.
For definitions and background, see [15]. A closure-finite cell complex is a Haus-
dorff topological space K which is a union of disjoint subspaces or cells each of
which is (1) a point, or (2) homeomorphic to the interior of the n-cube (0, 1)* for
some n. Given any n-cell K:.z, n £ 0, there must be a continuous onto map [0, 1]?
— cl(K?) which is a homeomorphism from the interior of the cube to K7 and for
which the image of the boundary of the cube is a finite union of cells of dimension
less than n.

Theorem 5.1. If G and H are closure-finite cell complexes, sois G * H.

Proof. Since every nonempty cell complex has at least one 0-cell, and since
G and H are homogeneous, we may decompose them so that {e} is a O-cell in each.
We also observe that G * H is equal to either

(*) e) VG Ui UAGx H) UilHx G) UiGx HXx G) U -+~

(%) ie) VUG VilH") Ui(G'x H") UilH'x G") UG x H'x G U -+

of the two expressions () and (¥*), where the union is taken over all finite alter-
nating direct products of G and H (respectively G' and H', where G' = G\ fed.
It is routine that each term of (%) is a cell complex; e.g. if G = |J G:’ and
H=U H7, where G7, HT' are n- and m-cells respectively, then G x H =

U (G:’ X H;”) where G:’ X H;" is an(n + m)-cell. Closure-finiteness is easy to
check since
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cl (G:l- X H’;’) =cl (G:’) x cl (G;").

Similar arguments apply to all terms of the union.

Now consider a reduced element x = g,h,---g b, €G+H. If g, € G and
b eH ], then x € z(G x oo xH k), which is an (n My et nk+ m, cell
Hence G * H is a union of cells; lookmg at the expansxon in G' and H' shows it
is a disjoint union and Lemma 2.2 shows i is a homeomorphism on each open cell.
While a given cell in G * H may appear more than once in (%), it is easy to check
closure-finiteness from the first appearance in that expression or from (). O

Actually, we are dealing here with a situation akin to Lemma 7.4 of [7].

A CW-complex is a closure-finite cell complex K topologized so that A C K
is closed whenever A N cl(K7?) is compact for each cell K?. By a countable CW-
complex we mean one with countably many cells. If K is a countable CW-complex,
K= K0 UKO UeeoU Kl v Kl V..U KZU---, i.e. there may be countable many
cells in each d1mens1on We may write K as a g-compact space as follows: K =
UX,, where X, = K X,=cl (Kl) v K0 u K9 0, and in general X is the union of
the closures of the f1rst s (n— s) cells, for 1 <s<n. Itiseasy to see that the
unjon of the X is all of K (since cl(K) C Xr+s) and that K with this decompo-
sition is a k,-space. This completes half of the following lemma:

Lemma 5.2. A closure-finite cell complex K is a countable CW-complex if
and only if it is a k ;space with a decomposition K = U X, n=1,2,-" .), each
X, being a [inite union of cells of K.

Proof. ‘‘Only if”’ follows from the above remarks. Conversely, let K be a
closure-finite cell complex and a k,-space. If an A C K has compact intersection
with each closed cell of K, it has compact intersection with each X and thus is
closed in K; hence K is a CW-complex. Since K is a countable union of finite

unions of cells, K is a countable complex.
Theorem 5.3. If G and H are countable CW-complexes, so is G * H.

Proof. By Lemma 5.2, G and H are closure-finite cell complexes and k-
spaces. By Theorem 5.1, G * H is a closure-finite cell complex. By Theorem 3.2,
G * H is a k -space and it is easy to check that the decomposition into compact
subsets given there makes the given compact subsets be finite unions of cells.
Thus applying Lemma 5.2 again, G *H countable CW-complex.

Clearly, Theorems 5.1 and 5.3 extend without difficulty to countable products.

Examplo 5.4. We apply the previous theorems to the free product of two circle
groups, st % st Let G and H denote two copies of the group of additive reals
modulo 1, so that G’ = G\ el = (0, 1), and consider the expansion (%) from the
proof of Theorem 5.1. Each term is mapped homeomorphically into G * H, and is

an open n-cell (0, 1)" for appropriate n. The expansion (x) decomposes G * H as a
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g-compact and, in fact, k -space. To complete the description of G * H as a CW-
complex, we need only to extend the various maps i: (0, 1)” — G * H to maps

j: [0, 117 — G * H, and to see how j maps the boundary of each n-cube. The map
j is obvious: j(rl, ceey, rn) = ]'(rl) . ~j(rn) where j(0) = j(1) = e and, if r €(0, 1),
then j(r) = i(r) where we mean the number i(r) to lie in the same factor G or H
as r did.

It is worthwhile to examine the first six terms of (**). The first is {el; the
second and third attach two 1l-cells, leaving a figure eight. We denote the points
of this complex by e, g €(0, 1) = (G"), and b €(0, 1) = i(H").

The fourth cell corresponds to G' x H'. j: [0, 11> — G # H is a homeomor-
phism on the interior, and maps the boundary of the square by (0, b) = b, j(g, 1) =
g j(1, h)=bh, and j(g, 0) = g, where b and g are appropriate points of the figure
eight. Clearly these maps agree on the corners (which map to e); hence the bound-
ary of the 2-cell is mapped into the 1-skeleton. At this stage, the CW-complex is
a torus.

The fifth cell, corresponding to H' x G', and its boundary, map into G * H
similarly. Again the boundary of the square attaches to the l-skeleton, and it
attaches by a map just like that of the fourth cell except for orientation. Thus
at this stage the CW-complex is homeomorphic to two concentric tori with the two
equators on one identified with the corresponding equators on the other. Fur-
ther, the second 2-cell has its boundary mapped onto the same 1l-cycle as the
first 2-cell; hence it does not affect the fundamental group, which remains
Z + Z. Up to homotopy, the CW-complex is now the wedge (l-point union) of
the torus and 2-sphere.

The sixth cell is of form [0, 1]3, corresponding to G x H x G. Typical of the
maps on the six boundary planes are (0, b, g) = hg € i(H x G) and f(g,, 0, g,) =
8,8, € {G). This term and all following ones involve 3-cells or higher, and thus
do not affect the fundamental group, which is Z + Z.

Hence we see that S! # S! is a CW-complex with one 0O-cell and two cells in
each higher dimension. After adding the two cells in each finite dimension, the
complex is an n-manifold except along the (n — 1)-skeleton; once all countably
many cells have been added, St xS s of course homogeneous. Every open set
in S! % S contains an n-cell for every n.

As a CW-complex, st % s is not locally finite. It is not metrizable (and not
first countable) although it is clearly separable. We asked in [13]: is st st
locally invariant? This question has been answered in the negative by S. A Morris,

Free products of connected locally compact groups are not SIN groups (to appear).

6. Fundamental groups. Let G and H continue to be any topological groups.
Now G * H is a topological group so its fundamental group #(G * H) is abelian.
We shall first show that it is at least as big as #(G x H) = n(G) x n(H).
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Theorem 6.1. 7(G * H) = #(G x H) x L for some group L (possibly trivial).

Proof. Apply the functor 7 to the sequence Gx H— G * H— G x H with
maps i, p; X p,, and composite the identity map (see 2.1). This yields maps

7(G x H) — a(G * H) — (G x H)

with composite the identity map. Since these groups are abelian, 7(G x H) is a
direct factor of #(G * H).

It is reasonable to conjecture that L is always trivial, i.e. that #(G * H)=
(G x H). We are able to prove this only for a restricted class of cases; §7 of [7]

provides a way of constructing many examples in this class.

Theorem 6.2. Let G and H each be a countable CW-complex with exactly one
0-cell. Then (G * H) = n(G x H).

Proof. Write G = U G}, H= §) H, as unions of cells, choosing the unique
0-cells G° and H® to be {e}. Now G * H is a countable CW-complex with unique
0-cell {e}, and n-cells arising as finite direct products of cells in G and H. Using
the expansion (#x) appearing in 5.1, we see that all the 1-cells have been put into
G * H once we pass the third term; any cell arising in G' x H' must be at least a
2-cell. We next add #(G' x H"), which adds 2-cells (and possibly higher dimensional
cells) to our 1-complex, introducing relations into its heretofore free fundamental
group. In fact, at this point the fundamental group is exactly (G x H), since by
Lemma 2.1, G x H is homeomorphic to i(e) U #(G") U i(H") U i(G' x H') = i(G x H).
Now adding #(H' x G') adds more 2-cells and possibly more relations; following
terms add only 3-cells and higher, but do not change the fundamental group. Hence
#(G % H) is at most some quotient of 7(G x H). Since Theorem 6.1 assures us it is
no smaller than 7(G x H), we conclude #(G * H) = #(G x H) as desired.

7. Quotient maps and coverings. Since R! is the universal covering of Sl, it
is tempting to hope that R! % R! will be a covering of S! % S!. We shall observe
that the most reasonable map from R! % R! to St % S! is not a local homeomor-
phism. We shall salvage, and generalize, a weaker result: stx st isa quotient
of R! * R,

Let f: G,— H,, i=1, 2, be continuous homomorphisms of topological groups.
By the free product f; * f, we mean the continuous homomorphism f; * f,: G, * G,
— H; * H, given by, e.g.,

fr*f(ehy - gnbn) = /1(81)f2(h1) fl(gn)/z(bn)'

This is simply the unique homomorphism extending f; and f, to a map defined on’
G, * G,.

Example 7.1. The free product of covering maps need not be a covering map.
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Let f: R, — S be given by /’.(t) = exp (27it) where R, is a copy of the reals and
§; a copy of the circle, j =1, 2. Now if x5= (4+08) €R,,y=1€R,, z5=(%-8)
€ Ry, with = }4 < 8 <}, then xg5yz5is areduced word and {x 5yzg| — %4 <& < ¥4} is an arc
in Ry * R;. However,
h* blxsyzs) = f(x)h()f(z5) = exp 2miC4 + 8))exp (2mi)exp (2mi% - 8))
=exp (2ni(%5 + 8)) - e - exp (27i(}4 = 8)) = exp(27i) = e,

the identity of §; * §,. Since Ker (/l * fz) contains an arc, f; * f, is not a local
homeomorphism.

We recall a few facts about quotient maps. An onto map f: X — Y of topologi-
cal spaces is a quotient map provided that A C Y is open whenever f~!(4) is open
in X. A continuous homomorphism of topological groups is a quotient map if and
only if it is an open map, i.e. f(B) is open whenever B is open. A direct product
of quotient maps of topological spaces is not necessarily a quotient map [8], but
a direct product of quotient (open) continuous homomorphisms of groups is always
open and thus quotient. While it is harder to establish, a similar result holds for
free products.

Theorem 7.2, Let f;: G, — H;, i =1, 2, be (onto) continuous homomorphisms of
topological groups. Then [, * f, is an open map if and only if f; and f, are open
maps.

Proof. Only if. Suppose f; * f, is open. Let A C G, be open; we shall show
fl_(_’? C H, is open. Define v,: H, * H, — H, analogously to p;: G, * G, — G,. Now
pI s/, * 5, and v, all carry open sets to open sets and thus yl(/l *f,)pT 1(4)
is an open subset of H,. We shall show

Vl(/l * fz)Pr I(A) = /I(A)'
First, let x € [j(4) so x = /,(a); let @ € pT 1(g). Then

i=g18, " 818,€G *Gy a=p@=g;--gy,  x=f{@=fg) ] g).

vilfy * )@ =v (f1(g)) -+ fr(g; N =f,(g;) -+ [,(g]) = x.
Hence x €v,(f; * f,))pT 1(A) as desired. On the other hand, if x ev,(f; * fz)p;l(A),

there is g,8,°+-8;18; € G; * G, such that

' ‘e
a=g, - g =Pl(g132 ...glgz)‘

and

x=v(fy *f)(g -+ 32')=f1(31) e filey) = f1lgy - 81')=f1(“)’

S0 X € /l(A) as desired. Thus /; is an open map; similarly for f,.
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If. We now suppose f; and f, are open. f; * f, is a continuous homomorphism.
We introduce a new topology 7 on H; * H, by letting a subset A of H; * H, be
open whenever (/1 * fz)'l(A) is open in G, * G,. This clearly makes Hi *H, a
topological space and f; *fz a continuous quotient map of topological spaces.
Since G, * G, is a topological group and H, * H, is a topological space and a
group (possibly unrelated), the usual argument shows the map f; * f, is an open
map (if A is open in G, * G,, then (fl * fz)'l(fl * [,MA) is a union of translates
of A, hence open; so (/l * /2)(A) is open). We now check that H, * H, in the new
topology 7 is a topological group, by checking joint continuity of (a, b) — ab~1,
If N is an open set containing ab~1, (fl * /2)'1(N) is open in G; * G,. Choose
g, 8, preimages of @, b in G, * G,; then glg;l E(fl * fz)'l(N). Since G, * G,
is a topological group, there are open neighborhoods A of g;, B of g, such that
A.B~lc (f; * /2)'1(N). Hence [, * f,(A), f; * [,(B) are open neighborhoods of
a, b and (f, * f,(AN(f * (BY~TCN.

Now the free product topology 7, on H, * H, is the finest topology on H, * H,
making it a topological group and inducing the original topology on each H,. Thus
we can show f; * f, open by showing the topology induced on H, by 7, is at least
as fine as that induced by 7, for i =1, 2.

Let N be open in G, * G,; then f; * f,(N) is open in7 and f; * [,(N) N H, is
open in the topology induced on H; by 7. It will suffice to show it is also open
in the topology induced on H; by 7., that is, in the original topology on H,. Let
hy €, * [,(N) A H,. Hence for some g,g,+++gfg} €N, by =f * (g -+ g}) =
[l(gl) e /2(82')° Choose a neighborhood U of e € G, such that Ug,g,+--g;g; CN.
Hence

/1*/2(U81 gz')=/1(u)fl */2(81 g2')=f1(U)b1-

Now since fj: G, — H, is open, /I(U) is an open neighborhood of e € H,; say
/I(U) = V. We have /I(U)'bl = V.h,, which is a neighborhood of h; in H;. That
is, V+b, Cf * [,(N) NHy, and f; * ,(N) N H, is open in the original topology
on H,. The argument for H, is similar, completing the argument that 7 3 7 and
f, * I, is open. This completes the proof of 7.2.
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