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Abstract
it is woll-known that edge-partitioning a spiit graph on n vertices may
require as many as n%/6 + /6 cliques. We show that (316)n2 + Ofn)
cliques will always suffice. This also improves a prior result for threshold
graphs. in the special case where the graph is the difference of dliques,
K= Ky 2t most 0?6 + O(n) chiques are enough.

1. Introduction.

We consider undirected graphs without loops or multiple edges. The graph K, on n
vertices for which every pair of distinct vertices induces an edge is called a clique on n ver-
tices. Any clique (not necessarily maximal) contained in a graph G is called a clique of G.
A clique partition of G is a set of cliques of G which together contain each edge of G ex-
aclly once. The clique partition number cp(G) is the smallest cardinality of a clique partition
of G.

Already in 1948 deBruijn and Erdés [6]) had proved that partitioning K, into smaller
cliques required at least n cliques. See also, e.g., [2], [7]. [9]. [11), [13]}, and [14].

A graph is split il its vertices can be partitioned io two sets A and B such that the ver-
lices of A form a clique and the vertices of B induce no edges. (Two vertices of which one
ISin A andone is in BE may or may not induce an edge.) For more details, see [10. Chapter
6] and [1]. !

A graph is called chordal or triangulated i#f no set of more than 3 vertices induces a cy-
Cle [10, Chapter 3]. A graph G is threshokd if there exists a way of labeling each vertex A of
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G with a Wtwe integer f(A) and there is another nonnegative iv:rteger t (the thresh-
old) such that a set of vertices of G induces at least one edge if and only if the sum of their
labels exceeds t (see [10, Chapter 10}, [4], (S}, and [12]).

All threshold graphs are split and all split graphs are chordal. In a sense, most chordal
graphs are split [1]). Induced subgraphs of chordal graphs are chordal; similar results hold for
split graphs and threshoid graphs.

A spiit graph is always a subgraph of a graph of the form K,,, - Rb, the complement of a
clique. Clique pantitions of complements of a clique are studied in [14], which gives very
precise results for the cases a<b.

In [9] it is shown thal a chordal graph G,, on n vertices has cp(G,,) < nz(} —¢) for some
¢ > 0. hence this result also applies to split and threshold graphs. The value of ¢ is not
known, but it is known that ¢p(G,,) can exceed n2/6 by at least O{n), as seen in the follow-
ing example.

Example 1. The clique partition number of G, = K, — K,,5 is n%/6 + /6, provided 6 di-
vides n.

By K, - Rznla we mean the split graph (which is also a threshold graph) on n vertices,
with /3 vertices in the clique and 2n/3 vertices in the independent set; all of the 2n2/9
connecting edges are present. Since this well-known construction is an excellent introduc-
tion to the mare complex ones which follow, we give it in some detail. We will use each of the
i=3(3 - 1)/2 edges of the clique K, as the base ol a triangle using as legs two of the
2n?/9 connecting edges; this gives a clique partition consisting of these j triangles and the
remaining 2n2/9 — 2j connecting edges which were not used by the trangles, to show
cp(G,) Sj + 2n2/8 — 2j = n%6 + /6 as desired.

To see that we can form al of the triangles called for, we divide the edges of the clique
Kna into (/3 — 1) perfect matchings of /6 edges each (a perfect matching is a set of
edges which uses each vertex of the clique exactly once; this is the step requiring that 6 di-
vide n). Now for each such perfect matching we choose a distinct vertex in the independent
set (using in total one less than half of those vertices) and join that vertex to every vertex in
the clique; this forms 6 disjoint triangles for each matching and g(3 - 1) = disjoint trian-
gles globa||y.| .

For the fact that this is a minimal partition, see [7] or [14). Informally, begin with the 2n?/9
connecting edges. We can combine them into larger cliques only by "buying™ the larger
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cliques by "spending” edges of K to pay for them; the best-yielding way to do this is to buy
one triangle with each edge of K.

If n is not divisible by 6, the calculations become more oomplex. anq the re.stm.in’g
cp(Gp) increasés by a number of cliques linear in n. We will in the followng ignore divisibil-

ity problems and terms linear in n when possible and express our results in a form such as
cp(G,) < n?/6 + O(n).
2. Statement of resuits.

A split graph on n vertices may need n2/6 + O(n) chiques 1o pardition it. We cannot show
that this many will suffice. We will show that ;3; n2 + O(n) will always suffice, with stronger

rasults available if we have information on the size of the large clique or on the number of
cross edges present. The worst case, for our present results, is if one-half of the vertices are
in the large clique and three-quarters of the cross edges are present. Here are the state-
ments of our results, with proofs postponed to the following section.

Suppose for all these statements that G, is a spiit graph with m vertices in the large
clique and (1 - nn vertices in the independent set. Fro each lemma, the proof actually gives
somewhat stronger results if the number of missing connecting edges is known.

Lemma 1. For 0<r<1/3, ep(G,) s (r- % )n? + O{n) < n%/6 + O(n).
Lomma 2. For 13515 172, cp(Gy) S 2 (r— r2)n2 + O(n) < 7502 + Ofn).
Lemma 3. For 1/2<r<2/3, op(G,) s (r— r2)n2 + O(n) s 75 n? + O(n).
Lemma 4. For 23 < r<4/5, cp(Gy) S (-3 2)n2 + O(n) < n2/6 + O(n).
Lemma 5. For 4/5<r<1, cp(Gy) S (r—r2)n2 + O(n) < 3 n2/6 + O(n).
Theorem 1. For all split graphs G,,, cp(G,) < ,3—5 n? + O(n).
Corollary 1. The same bound applies to threshold graphs.
This is trivial since every threshold graph is split. It improves the result in [9].
Theorem 2. A graph of the form K, ~ (Rm) always has clique partition number not exceed-
ing n2/6 + O(n).

Lemma 5 can clearly be improved considerably, but other than a few questions about this
near the end of the paper, we leave this issue for the future.
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Outline of proof. Theorem 1 is immediate from the lemmas. Lemma 5 is immediate: use
the large clique as one clique and each of the rn{(1 - r)n) connecting edges as a (one-edge)

clique. The fact that some connecting edges may be missing only, reduces this bound on
cP(Gn) : i

The proof of each lemma other than Lemma 5 involves a process starting like in Example
1: that is, we combine cenain of the connecting edges into triangles by using selected edges
from the large clique. If the clique is large, not alt edges of the clique is used:; i it is small, not
all connecting edges are used. We first do the construction supposing that ail the connecting
edges are present, but with the ones actually missing "marked™. If not all connecting edges
are used in triangles, we match vertices of the independent set to matchings in the clique so
as to minimize the number of marked edges which are used in triangles. Note that any time
an edge not used in a triangle is missing, it decreases the number of cliques used in the par-
tition by one; when an edge that we tried to use in a triangle is missing, it may increase the
number of cliques needed by one (we may need the base of the triangle, and the other leg,
as two one-edge cliques, instead of the triangle). Thus we produce a partition typically
counted by (number of triangles) + (uncovered connecting edges) + (triangles with a missing
edge) — (missing connecting edges not in triangles). Typically, this is a good partition (in the
context of our proofs) if there are few missing edges. |f there are many missing edges, a so-
lution like in Lemma 5 (one large clique plus all present connecting edges) is smaller. The
worst case (lor a fixed r) is when the number of missing connecling edges is such that these
two solutions have'the same number of cliques; we set them equal and solve for the number
of missing edges to get the final statement.

3. Proofs.

For readability, we prove Lemmas 1 to 4 in increasing order of difficulty. We mention par-
tial results for Theorem 2 as we go, and compiete i al the end.

'Proof of Lemma 1. We are given 0<r<1/3. Theclique K, has (m){(m - 1)2 edges, in

m— 1 perfect matchings of rV2 edges each. The independent set of (1 —r)n vertices we
divide into two parts: rn — 1 vertices chosen lo be adjacent to as few as possible missing
connecting edges, and the remaining (1 — 2nn + 1 vertices. We join the first m — 1 vertices
to the maichings, building (if no connecling edges are missing) rm{m — 1)/2 triangles and
leaving n2(r - r2) —rn(m - 1) connecling edges oulside triangles. Since fewer than half of
the independent vertices were used to form triangles, the number of missing edges involved
in triangles is less than the number of missing edges associated with the uncovered edges;
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hence considering missing edges could only decrease the number of cliques in the partition.
Hence the number of cliques used to partition G, is al most

m(m—1)/2+n2(r-r2)—m(m-n)-n2(r—-%ra)+O(n)

as desired. This is increasing in the range 0 << 1/3 with a maximum of n?6 + G(n). This
completes the proof of Lemma 1 and of the corresponding case of Theorem 2. ]

Proof of Lemma 4. We age given 2/3<rs 4/5. Divide the vertices of the large clique Kin
into two sels of size V2. We will cover the edges within these two sels by two cliques K.
and use some of the remaining edges of K. which form a complete bipartite graph
K(rv2,m/2), as the bases of triangles. Divide these 12n2/4 bipartite edges info mv2 perfect
matchings of rv2 edges each. Join each of the (1 —nNn <m/2 vertices of the independent
set to one of these matchings, to form a total of (1 — r)n(m/2) triangles consuming all the
connecting edges; the number of bipartite edges not consumed by these triangles is (m/2 —
(1 = Nn)(m/2). Thus, if there are no missing connecting edges, we have a partition of size not
exceeding
2+ (1 - 0n(m72) + (m2 - (1 - nn)(rm2) + O(n) = 2n2/4 + O(n).

Since r2n2/4 < ;g n2 throughout this range, this completes the proot of this case of Theorem 2.

Now suppose 12n2 connecting edges are missing; in the worst case each one may kill a
triangle, requiring one extra clique for each missing edge (triangle base plus other leg, in-
stead of the triangle). Thus we have cp(Gy) < (%14 + 2)n? + O(n) as our best solution when
t is sufficiently small. It 12 is large, the covering by the single large clique and single con-
necting edges, cp(G,) S 1 +(r— 2 —12)n2, may be better. The worst case is when these are
equal, and in that case (neglecting O(n) terms and setting r2/4 + 12 = r— 2 —12) wefind t is

approximately 5 - % 2. Substiluting this back into either expression, we conclude that

cp(Gp) < (% —% 2 )n2 + O(n) as desied. This is decreasing throughout the range 23srs
4/5 with the maximum value n2/6 +O(n), completing the proot of Lemma 4. (]

Proof of Lemma 3. We are given 1/2<rs< 2/3. The proof begins like that of Lemma 4,
above. The difference is that now there are more than mv2 vertices in the independent set.
Therefore, all of the bipartite edges within the large clique can be paired with vertices of the
independent set, building 2n2/4 triangles and leaving (r - 2 — 2r2/4)n? of the connecting
edges outside of triangles. Thus, if there were no missing edges, the number of cliques
needed to partition would be at most 2 + 2n24 + (-3 P2 = (1 - 2 )n2 + O(n). This does
not yield cp(G,) < n%/6 + O(n) for the entire range, but does prove that inequality (and hence
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Theorem 2) for the range 17/30<r<2/3.

t:low suppose there are t2n? missing connecting edges. ii we chose the independent
vemces.wnh fewest mls'smg connecting edges to build our lriaridles. the number of missing
connecting edges that kill triangles will be at most (r/2)/((1 — r)n) times 12n2, with the re-
maining (1 — r-r/2)/(1 —r) limes 12n2 missing edges bei ecti
’ - ng among the connecti
not involved in triangles. Hence " "o edoee
5
op(G,) S (r—3r3)n2 + Ofn) + 1'-@:‘,'—;—"'—”1 2n2<(r- % 2)n? + O(n) + %’- 12n2.

This is a useful formula when 2 is small. When 12 is large, we can perhaps cover G, bet-
t:r zsmg the single large clique and single connecting edges, yielding cp(G,) <1+ (r - °-
t)n<,

These two formulas are equal (neglecting O(n) terms) when 2 = % (r—r2), sothatis the
worst case. In that case, both formulas reduce to cp(G, <2 (r-2)n2 mpleti
proot of Lemma 3. WEal : I Ol oo ' 'h:
Proof of Lo.n'lrna 2. We are given 1/3 <r < 1/2. The proof begins like that of Lemma 1,
above. ‘We join m —.1 vertices from the independent set each to a complete malching in the
large cllque thus using every edge in the large clique and forming (if no connecting edges
are mns.slng) m{m — 1)/2 triangles, leaving n2(r — r2) — m(rn — 1) connecting edges as one-
edge cliques, for a clique partition into at most n2(r —g 2) + O(n) edges and triangles. Since

. 3 . . . . )
the expression r—3 2 is decreasing in this range, with a maximum value of 1/6, we have
proven this case of Theorem 2.

Now suppose as usual that 12n2 connecting edges are missing. Since we have used m
-1 of '::_\:a (1 - rn vertices in the independent set to build triangles, we can assume that at
most (i t2n2 of the missing edges kill triangles and add cliques, and at least (1 - (T":—;")l"’n"’
kil single edges and reduce the number of cliques. Thus the net increase in the number of
cliques needed is at most

m-1

-1 _
(i-on —0O1- e M2 < =1 2p2

and so
(G < (r— 22 + 2= 2)n2 4 Ofn).

This iqrmula is useful when t is small eno i i
ugh. If t is large we use -
My bty rg ! (as in Lemma 3} the for
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These two formulas are again equal (neglecting O{n) terms) when 12 = % {r — ), complet-
ing the proof of Lemma 1 »

Proot of Theorem 2. We got the required bound as a part of the proofs just given for
Lemmas 1, 2, and 4. The proof for Lemma 3 worked for only part of the range, omitling
roughly 1/2 < r < 17/30. We can easily modify the method of Lemma 2 for this case. Divide
the large clique into (rn — 1) perfect matchings of m/2 edges each. The independent set
has (1 -r)n vertices, and r> 1/2 so 1 —r <r and there are not enough independent ver-
tices to pair one with each of the matchings. Pair every veriex in the independent set with
one of the matchings, leaving (m - 1) — (1 —~ r)n = (2r — 1)n — 1 malchings unpaired. This
yiekds a partition into (1 — rn(rv2) triangles and ((2r — t)n — 1)(rv2) single edges (the
matchings in the large clique that did not result in triangles); hence

P(Ky — K(1_npo) <((1 =1} + ((2r = 1)n = 1))(rv2) = 120272 + Ofn)

which is about n?/8 at r=1/2 and remains below n2/6 for r as large as 1/v3 > 17/30.
This completes the proof of Theorem 2.

4. Remarks.

Here we make a few remarks about the large-clique case, and about some dilficulties in
the case when r=1/2 and about 1/4 of the connecling edges are missing. In both cases,
the hope is to suggest problems that seem 1o border on design questions or generalizations
of them, in the hope of interesting others in the questions.

4.1. Graphs with a large clique.

As was pointed out already in [14), cases where the large clique includes fewer than half
the vertices are relatively easy, in large part because it is known that only paditions into
edges and lr_iangles need to be examined. What would be needed to strengthen the bounds
on cp(K, - K,s) or similar complements of cliques or split graphs containing large cliques?

We illustrate with the situation r = 4/5; what we say will generalize to r =c/(c + 1) for
iMegers ¢ 2 2. The proofs above yielded a covering by about ;-snz cliques, which was ade-
quate for our desired bound of n?/6; but :—snz is clearly much 100 high for the clique partition
number of K, - K5 or split graphs made by deleting some of ils connecting edges. Sup-
pose, for example, that we could solve a “Kirkman's schoolgirl problem” for dividing %n into
groups of 5. This would mean parlitioning the edges of K,,5 inlo n/5 sets, each of which
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was partitioned by 4n/25 vertex-disjoint copies of Kg. (For r=2/3 this is the partition into
perfect matchings of Example 1; in general it is called a resolvable block design ). By joining
each point in the independent set of size /5 to one of these sets of cliques, we partition K,
- K5 exaclly into % n? copies of Kq. it is easy to see (compare the methods of {7]) that
this would be the smallest possible clique partition of this graph. Of {:ourse. we are perfectly
willing 1o settle for an approximate solution to this generalized schoolgiri problem, especially
one good enough to get us a partition within O(n) of optimal. In fact, such resolvable block
designs do exist for large enough cliques, by a 1973 result of Ray-Chauduri and Wilson; see
[2], Chapter X!, Section 7.

If the large clique has slightly fewer than c/(c + 1) vertices, or if a few of the connecting
edges are missing, we could approximate this partition much as we did in Lemma 2. |f the
large clique has slightly more than c/(c + 1) vertices, we might do better by a partition more
like that of Lemma 3: that is, the large clique could be covered by using ¢ cliques of size
slightly over n/(c + 1), with the remaining edges (which form a complete c-pardtite graph)
partitioned into cliques K. and joined to the independent set to form cliques K

c+1°
4.2. An example with r = ;—

The possibility remains open that more than n2/6 + O{n) cliques may be needed in the
range 1/3 <r < 2/3 when approximately 1/4 of the connecting edges are abseni. We have
found no example where more than n?/6 + V6 chiques are actually required, and conjecture
that this number will always suffice. For concreteness, let us discuss the case r = 1/2 with
exactly 1/4 of the connecting edges missing. First, we note that the deletion of connecling
edges may in fact increase the number of cliques needed.

Example 2. The graph K, - K., can be clique partitioned using about n2/8 cliques, but it
is possible to delete connecting edges so that at least (:-, + % n2 cliques are needed.

Consider the graph built as follows: put 3n/8 verticesina set A, /8 inaset B, and n/2
inaset C. Let A and B together make up the large clique, and C the independent set. If
all vertices in C are connected to all vertices in A and B, we have the "full” split graph and
it is clear from Lemma 2 that this can be partitioned into about n2/8 cliques; [7] or [14] shows
that this is best possible. Now delete all the edges connecting C 1o B, thatis 1/4 of the
connecting edges. We summarize an argument, based on methods of [7}, that this needs at
least %},2 cliques to padtition it. There are 3n/16 edges between C and A. Even using
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all the (approximately) ;%5 n2 edges of A, we cannot combine th;m into fewer than (;33 -
on? = 3502 cliques. Even in order to parition them into at most n%/8 cliques we must
build cliques which use at least jsn? edges from A. But A had only about 2.n2 edges, so
at most 735n? edges now remain unused. There are now 2.n2 edges from A 1o *; to com-
bine them inlo cliques we can use at most the remaining 75n2 edges from A and 502
edges found in B. Using Lemma 4 of [7], we find that these :—;nz edges cannot be parii-
tioned with fewer than (53—4 - ,—'.j - ;%;)nz = %n"’ cliques. Hence the best possible clique

partition of this graph would require at least (;'% + ,—g;)n2 - % n? cliques, as required.

The bound given above is a minimum, and not actually attainable. How well can we do
for this graph? We show that we can get under n2/6, for this example. Use the edges of A
1o build triangles, partitioning the edges between A and C into .1'.:_.“2 edges and triangles.
Now use all of the edges in B to partiion the edges between A and B into %nz edges
and triangles. The total coefficient is ,1% + % = % < %. as desired. There is no obvious rea-
son to believe that this is the best possible partition. Since it appears that an edge of A is
marginally twice as valuable in combining edges from A to B as in combining edges from
Ato C, :—‘ n? + O(n) seems to be a plausible guess.

4.3. More general cases with r = %

In the above example, we got a result under %nz even though % of the connecting edges
were missing. The reason we did better than in the proot of Lemma 2 was, in a sense, that a
smaller percenage than expected of the connecting edges destroyed triangles. Recall that it
one leg of a triangle is missing, we need an extra clique; if two edges of the same triangle are
missing, we do not require an exira clique, simply employing the base instead of the triangle.
So it we could caretully select our decomposition of the large clique into perfect matchings,
and then pair the perfect maichings carelully with the points in the independent set, we
should be able 10 keep the partition number down. Note that even "average” success should
give us a better result than ,3—,. Supposing in Lemma 2 that r -;—, and t= ,'—,. the proof sup-
poses that almost all of the ,'—sn"’ missing connecting edges will kill triangles. If the missing
edges were in fact randomly distributed, then } of the time we would find two edges missing
within the same triangle; the increase in cliques would not be +n2 but only G)en? = &n2.
Thus the total partition number would be about ';%n"’ instead of f—s n2.
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Unfortunately this estimate still exceeds %n"’. To get under %n"’ we would have to get a
better-than-average selection of matchings within the large clique. Of oou: we can choose
the tirst matching freely (and in fact need to restrict it only parily), gaining ‘ r of partitions
linear in n; but there seems to be no theory that aliows us to manipulate the set of matchings
1o get a gain proportional to n2.
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