JCMCC

THE JOURNAL
of
COMBINATORIAL MATHEMATICS
and

COMBINATORIAL COMPUTING

VOLUME 1

APRIL, 1987

DINING PHILOSOPHERS AND GRAPH COVERING PROBLEMS

Edward T. Ordman
Department of Mathematical Sciences
Memphis State University
Memphis, TN 38152

ABSTRACT. Let the vertices of a graph denote
processes in a distributed or time-shared computer
system; let two vertices be connected by an edge if
the two processes cannot proceed at the same time
(they mutually exclude one another). Managing mutual
exclusion and related scheduling problems has given
rise to substantial literature in computer science.
Some methods of attack include covering or
partitioning the graph with cliques or threshold
graphs. Here I survey some recent graph-theoretic

results and examples motivated by this approach.

Partially supported by National Science Foundation
Grant Number DCR-8503922

1. Introduction.

I am a pure mathematician by training and a computer
scientist by choice and employment. I work in a department
that is strong in graph theory. It is thus fairly natural
for me to keep an eye out for computer science problems
that have graphs in them, and to see if I can't attack them
or generalize them by asking my graph theorist friends for
the tools that I need. I'm happy to report that it
sometimes works. It also has the happy result that
sometimes I ask what appears to be a new question to ny
colleagues in graph theory, or find that an example or
approach which seems natural in the computer science
context helps answer a preexisting graph theory question.

The uses of graph theory in computer science are so
great that I'm certainly not capable of a large survey. I'm
going to pick two areas that have been productive for me in
the 1last year or two. In this paper I'll talk a little

JCMCC 1(1987), pp. 181-190

about mutual exclusion problems and a 1lot about graph
coverings; in the next I'm going to talk a lot about fault-
tolerant networks and a little about multiple connectivity
in graphs.

In an example due to Dijkstra [D], five philosophers
are gathered around a table. In the center is a large
platter of spaghetti. 1In front of each philosopher is a
plate; between each two philosophers is a fork [Figure 13.
If a philosopher becomes hungry, she attempts to pick up

B E

= D

Figure 1.
the fork on either side of her; if she gets them both, she
eats and puts them back down. If she gets only one fork,
‘éhe waits patiently for the other; if she doesn't get both
for a 1long enough time, she starves to death. The
philosophers don't speak, and don't pass forks; in
particular, if each one grabs her right-hand fork, they all
starve.

The problem computer scientists see in this is writing
programs (regarding each philosopher as a computer process)
that will

(1) Prevent adjoining processes from eating at once

(mutual exclusion);

(2) Prevent the system from halting with no-one able

to eat (deadlock prevention) ;

(3) Let everyone eat eventually (starvation avoidance)

Oor even promptly (fairness, bounded waiting).

When I first saw the problem, the graph jumped out at
me. Each process is represented by a vertex; two processes
that cannot proceed at the same time have their vertices
connected by an edge. And I had the following dreadful
thought[01]: the waiter, seeing the problem, removes the

182

five forks and pPlaces in the center of the table, where
anyone can reach them, 2 spoons, two knives, and two forks.
Unfortunately, Philosopher A wants 2 spoons; B wants a
spoon and a knife; C wants two knives and a fork; D wants
two forks; and E wants a fork and a spoon. It is easy to
see that the conflict pattern is exactly the same. The
waiter takes those utensils away and brings a different
set. Regrettably, the wants lists of the philosophers
change again, and cause the same conflict pattern. I leave
to you the following nasty exercise: What is the smallest
number of utensils, and the smallest number of types of
utensils, that could cause this conflict pattern? (Note
that the original five forks were five different "kinds" of
utensils, in that they were noninterchangable).

2. Synchronization Primitives.

One of the kinds of tools computer scientists use in
modelling mutual exclusion problems is a device called a
synchronization primitive. A simple example is called a
semaphore. A simple semaphore is rather like one of the
original philosophers' forks; it is a variable that can be
grabbed by the first pProcess to get to it. Suppose the
processes Pl, P2, P3 need to execute a certain piece of
code (in each) called a critical section in such a way
that only one at a time is executing a critical section.

Let the variable X have the value 1 at start-up time. In
each process put the following code:

P(X) ;

critical section ...

V(X);
The operation P(X) works as follows: if X = 1 then set X to
0 and proceed; if X = 0 then WAIT until X becomes y IS The

operation V(X) changes X from 0 back to 1. (I think that P
and V stand for Dutch words for "take" and "free").

The simple semaphore or PV operation will control only
a set of processes such that any one excludes all the
others: in the sense of our conflict graphs, a clique. To
model the five dining philosophers with such operations, we
would need 5 semaphores X1 through Xx5.

183

There are many other conflict patterns that arise
naturally and that don't lead to cliques. One of the most
important in practice is the so-called "Readers and
Writers" problem[C]. Suppose we have some information in
the computer, and several computer terminals that want to
access it; some want to read the data, others want to
change it (write or rewrite it). In some sense, it is all
right if several processes read it at once; however, if
someone is writing it, all other readers and writers must
be excluded or they risk recieving (or creating)

inconsistent information. Assuming 3 writers and 5
readers, the conflict graph looks like Figure 2.
wi RI
R
R3
RY%
w2 RS
S Figure 2.

How many simple semaphores would it take to model
this? This amounts to asking for a set of cliques that
edge-cover the graph. Note that each reader lies -in a
unique clique K, and that those 5 cliques cover the graph.

That isn't a very desirable solution. For one thing,
Wl and W2 seem to be competing for a single resource and
yet they need to grab 5 semaphores. We can't associate the
edge between them with a single semaphore. So we already
have a suggestion that it might be nice to consider edge-
partitions as well as edge-coverings of the graph. Another
complaint is that this way of controlling things needs 5
separate semaphores and thus 5 bits of shared memory.

We can solve the second complaint by using a slightly
more powerful operation called a PV-chunk operation[HZ].

Here we allow the shared variable X to be larger than one
and we allow it to be decremented or incremented by any
positive integer. For example, start X at 5; each reader
proceeds only if it can decrement X by 1, while a writer
proceeds only if it can decrement X by 5. This operation is

184

actually present in current systems, 1like UNIX and C; it
also seems feasible to implement in special-purpose
hardware if needed in the future. Our programs are now much
simpler, and we've achieved the needed mutual exclusion
with only 3 bits of memory.

3. Threshold graphs.

The reader-writer graph is an example of a threshold
graph. These were introduced first by Chvatal and Hammer
[CH] but then turned up independently later by Henderson
and Zalcstein [HZ] who were simply identifying the conflict
graphs controllable by the PV-chunk synchronization
primitive. Label the readers in our graph each by a 1 and
the writers each by a 5. Let t =5 be the threshold
associated with the graph. The important property is that a
set of vertices induces at least one edge if and only if
the sum of its labels exceeds the threshold. A graph is a
threshold graph if and only if it can be so labelled.

Here are a few equivalent definitions: a graph is a
threshold graph if and only if it has no induced subgraph
which is 2K, (two disjoint edges), C4 (a square), or L
path on 4 vertices); a graph is a threshold graph if and
only if every induced subgraph has at least one vertex
which is dominating, that is, a vertex which is connected
to every non-isolated vertex in the graph.

Given a graph, one can quickly test whether it is a
threshold graph. A more interesting question is to know the
minimum required value of the threshold t, since this tells
us among other things how much shared memory we need to run
our synchronization primitive. This was calculated in an
algorithmic way by Orlin [0]; a more recent calculation
[02] based on the "normal form" of Henderson and Zalcstein
relates it more closely to the clique covering of the
threshold graph.

Suppose the graph has d, isolated points; label them 0
and omit them from the graph. Now there are some vertices
connected to all the vertices ("dominating vertices");
delete them from the graph. What is left has d,; isolated
vertices; 1label them 1 and delete them. Repeat the

185

deletion of dominating vertices; then label the d, new
isolated vertices each with the integer d;+1. At the next
stage label the d; isolated vertices each with the integer
(d,+1) (dp+1). In stage j+1 label the dj isolated vgrtices
each with (d1+1)(d2+1)...(dj_1+1). At the end one is 1left
either with an isolated set of dp points or with a clique.
In the former case label the isolated vertices
(dq+1) ... (dg_qt+1) and let t be that times (dy+l) minus 1.
In the latter case set dk = 1, label all the vertices of
the clique with the appropriate product of earlier (d4;+1)
and let t be twice that minus 1. I haven't told how to
label the "dominating" vertices but those can now be filled

in fairly easily.

4. Shared Memory and covering theshold graphs with

threshold graphs.
The value t can be motivated as a shared memory

measurement; we can control a threshold graph having
separator t by using PV-chunk operations on a shared
‘yariable capable of having the values 0 to t. The computer
science theorem that motivated me to do this is the
following: We cannot do mutual exclusion for a
threshold graph with any synchronization primitives using
shared variables capable of being in less than a total of
t+1 states[02]. The proof is not too hard. It hinges on the
fact that any union of subsets of the various "isolated
sets" of d,, dy,..., dy vertices represents a collection of
processes capable of running at one time; there are t+l
such essentially different unions of subsets (two of them
are not essentially different, in this sense, if they have
the same number of processes from each set.) Since any two
such essentially different collections of running processes
can be followed by different sequences of processes
starting and stopping, they must be represented by
different states of the shared variables. This argument
works even if we use much stronger primitives than PV-chunk
(for instance, the strong test-and-set of Lynch and
Fischer[LF]); it shows that PV-chunk is in some sense a
"pest possible" primitive for doing mutual exclusion on

186

threshold graphs.

This theorem has a surprising consequence for graph
coverings. Let the threshold graph G be edge-covered by a
collection {Gi) of threshold graphs, where Gy has threshold
separator t;. Then G can be controlled by several PV-chunk
variables, one for each Gj, with total number of states the
product of the (ti+1). Hence that product can be no 1less
than t+l. My original proof of this involved an extremely
complex argument on clique coverings of the various graphs
and subgraphs; it now falls easily out as a corollary of a
theorem on mutual exclusion.

5. Clique coverings and clique partitions of threshold
graphs.

The clique covering number of the graph is now just d,
o OO e since no two of the "isolated" vertices can lie
in the same clique. What can we say about the clique
partition number? That is, what if we attempt to choose
cliques that partition the edges rather than just cover

them? In the "normal form" of the graph, we draw a version
of the graph that has all vertices that became "dominating
vertices" on the right and all that became "isolated
vertices" on the left. One possible clique partition comes
to mind: cover the big right-hand clique with one clique,
and all the crosswise edges with single edges. Under what
circumstances 1is this best possible? Let's 1look at a
concrete case, to see that it may be pretty far from the
best possible partition.

Suppose that we have 2t vertices arranged as follows:
t form a clique A, written on the right; t form a discrete
set B, written on the left. I'll denote the crosswise edges
-- in this case they form Kt,t -- by C (Figure 3). The
partition we suggested above needs 1 clique for A and t2
for the edges in C, a total of t2 + 1. But we can do much
better. Partition A into perfect matchings (let t be even)
and associate each of the t-1 matchings with a point of B.
Now the edges from that point of B together with the edges

187

of the matching form t/2 disjoint triangles.

have (t-1)t/2

(-1
times)

Figure 3.

Altogether we

triangles plus t edges left over from the

remaining point of B. Thus we have a partition into
1)t/2 + t = (
about half as many cliques as before.

every time we combine 2 into a clique,

t+1)t/2 disjoint triangles and edges,

3

(t-
ust

Is this best possible? Yes. We have the t2 edges in C;

edge from A.

we use at least one

If we try to combine more than two edges from

C into one clique, we use edges from A at a faster rate.

6. Clique partitions of other graphs.
. suggests an approach to clique partitions
that has been pursued in [CEOP], [EFO], [EOZ], Here are a
few of the results:

'

edg

All

this

Suppose we consider a graph G on n vertices
divides into three parts: A and B containing vertices

es,

C with Jjust connecting edges from A to B.

following results are from [EFO] except as noted:

lemma.

and

If G has a edges in side A, no edges in sid
c connecting edges,

cp(G) is at least c2/(2a + .C)e

Corollary.
enough, cp(K, - K;) is approximately c2n22,

Lemma.

B,

and c

If

1/2 <a< 1l and m = cn?, then for n

Let G have a edges in side A, b edges in

connecting edges. Then cp(G) is at least

c - a->b - min(a,b).

t

e

la

S

hat
and
The

B,

then the clique partition number

rge

ide

Example. [CEOP] Let cc(G) be the clique covering number of
G. Then cp(G) - cc(G) can be at least n2/4 - n3/2/2 + n/4.
The trick is to let A be the union of k/2 cliques on k

188

vertices each, where k is the square root of n, and B be a
discrete set on n/2 vertices; C has all the edges from A to
B,

2

Example. [EFO] cp(G)/cc(G) can grow as fast as cn for
some constant. This time we want A to be a single clique

on n/2 vertices, and B the union of 4 cliques each on n/8
vertices; C has all the edges from A to B. (The constant c
we obtain is very low, about 1/64. We know that it cannot
exceed 1/12 for large n.)

Lemma. Let a clique K, have r vertices partitioned into
two sets A and B. Suppose A has a vertices and B has b
vertices with a + b = r and a 2 m. Then

((m-1)/m)ab ¢ a(a-1)/2 + b(b-1)/2

Example. Let G be a graph with A a clique on n/3 vertices,
B the union of two cliques each on n/3 vertices, and all
cross edges. Then cp(G)/cc(G) grows proportionally to n2.

(This answers a question of Dom DeCaen).

More recently [EOZ] we have been looking at coverings
and partitions by and of threshold graphs and chordal
graphs (a chordal graph is a graph in which every cycle
larger than the triangle C; has a chord) . Actually, we've
been looking at all pairs from the set (clique, threshold
graph, chordal graph, arbitrary graph) and attempting to

ask such questions as
(1) If a graph of type Y contains many edges, how big

a subgraph of type X must it contain?

(2) How many graphs of type X does it take to cover a

graph of type Y¥?

(3) How many graphs of type X does it take to

partition a graph of type Yo

Some of these questions are élready answered in the

literature, but quite a few are not, and the above methods
of attack have been quite productive. For example,
consider an arbitrary chordal graph and ask how many
cliques it may take to partition it. It is easy to see as
above that K, - KZn/3 requires roughly n2/6 cliques to
partition it, and that any graph can be partitioned with

189

n2/4 cliques; we don't see anything in the literature that
would tend to close the gap between 1/4 and 1/6 as a
coefficient. Using techniques very much like those above,
we ([EOZ]) can show that there is a constant c (our proof
only yields about .01) such that any chordal graph can be
partitioned with no more than (1—c)n2/4 cliques.

References

[C] P.J. Courtois, F. Heymans, and D.L. Parnas, Concurrent control with "readers" and
"writers", Comm. Assn. Computing Machinery 14(1971), 667-668.

[CEOP] L. Caccetta, P. ErdSs, E.T. Ordman, and N.J. Pullman, On the difference
between clique numbers of a graph, Ars Combinatoria 19A(1985), 97-106.

[CH] V. Chvatal and P. Hammer, Aggregation of inequalities in integer programming,
Ann. Discrete Math. 1(1977), 145-162.

[D] E.W. Dijkstra, "Hierarchical Ordering of Sequential Processes," in C.A.R. Hoare and
R.H. Perrott (eds.), Operating Systems Techniques, Academic Press, New York (1972),
pp. 72-93.

[EFO] P. Erd6s, R. Faudree and E.T. Ordman, Clique partitions and Clique Coverings,
Proc. First Japan Internat. Conf. on Graph Theory and Applications, Hakone, June,
1986(to appear).

[EOZ] P. ErdSs, E.T. Ordman, and Y. Zalcstein, Graph coverings and partitions with
chordal threshold graphs, in rough draft.

[HZ] P.B. Henderson and Y. Zalcstein, A graph-theoretic characterization of the
POV-chunk class of synchronization primitives, SIAM J. Comp. 6(1977), 88-108.

[LF] N.A. Lynch and M.J. Fischer, On describing the behavior and implementation of
distributed systems, Theoret. Comp. Sci. 13(1981), 17-43.

[O] J. Orlin, The minimal integral separator of a threshold graph, Ann. Discrete Math.
1(1977), 415-419.

[O1] E.T. Ordman, Threshold coverings and resource allocation, Proc. 16th S.E. Conf.
on Graph Theory, Combinatorics, and Computing, Congr. Numer. 49(1985), 99-113.

[02] E.T. Ordman, Minimal threshold separators and memory requirements for
synchronization, SIAM J. on Computing (submitted).

190

