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0. Introduction

Free topological groups were first investigated in the 1940's by Graev [3],
Kakutani {7], Markov [8], Samuel [13], and others; they have recently attracted
considerable attention [3, 4, 6, 11, 12, 14] arising at least in part from the current
interest in those “universal™ properties enjoyed by all left adjoint functors. These
universal properties provide very elegant proofs of some of the more elementary
properties of free topological groups, and lead one to hope that the more subtle
problems of the structure of the topology of free wpological groups might yield o
these same methods of attack, In fact, Ordman, in [12], has described completely
the topological structure of the free topological group over a k_-space using the
universal properties of “free” functors and k-coreflections, He showed that the free
group over & k, -space is the weak union of the subsets consisting of words of length
=n, and that each of these subsets carries the quotient topology induced by the
canonical map

by IX W X T = FalX s
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which sends n-tuples
(et sy

o -=letter words

S R i)
It remained an opeén guestion whether or not these results were true for maore
general topological spaces. In this paper we show that even for as nice a space as O
both of these results are false, and further that not only does the free group over @
fail o be a k-space, but that evén the closed subset consisting of words of length =3
fails 1o be a k-space.

We choose to work with free topological groups of the Grasy (pointed) type. In
Section 1 we use the “'universal™ properties mentioned above to prove clegantly a
number of preliminary results that drein print for Markov free topological groups
and/or are part of the folklore for Graev groups. In Sections 2 and 3 we develop
the machinery needed o prove the assertions about & stated above. In section 2 we
also use the propertics of the maps i, to discuss the structure of neighborhoods and
compact sets in Fp(X), the set of words of length not exceeding n. Section 4
contains the proofs of our main theorems.

1. Preliminaries

Our main references for this section are “Applications of the Stone-Cech
compactification (o free wopological groups™ by Hardy, Morris, and Thompson [5]
and “Free topological groups” by Thomas [14]. Both of these papers discuss a
slightly different notion of free topological groups than we are considenng (the
Markow rather than the Graey defimition}, but the proofs are sufficiently similar that
we will only refer the reader to the corresponding result in one of these IwWo papers,

1.1. Definition. The Graee free opological group over a pointed wopological space
(X, p) consists of a topological group Fa(X, p) and a continoous function
nx i (X, p)= Fa(X, p), with nx(p)= e, and with the property that any continuous
function f from X to a topological group &, such that f{p)= eg “hfts™ to a unigque
continuous group homomorphism [ Falx, pl= 03, 5o that

(X, p) = FalX. p)
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commutes, Put more succinctly Fg is the left adjoint to the forgetful functor from
the category of topological groups to the category of pointed topological spaces.

The existence of the functor F5 can be shown directly as in [14, Sections 1.2, 1.3
and 1.4]; by noting that F (X p)=Fu (X)/(p), where Fy(X) is the Markov free
group over X and {p) is the normal subgroup generated by the singleton word p, or
by using Wyler's notion of 8 TOP category [15,16],

We can describe Fs(X, p) as follows: The underlying group of Fa(X, p) is the
usual free group on the set X'\{p}. The function nx : (X, p)=+ Fo(X, p) is “insertion
of generators” with nx{p)= & The topology of Fz( X, p) can be described either as

{a) the finest topology compatible with the group structure such that 5y is
continlious, or

{b) the weak topology induced by all group homomorphisms f: FolX.p)=G,
where G is a topological group and f+nyx is continuous.

In fact, Fa(X, p) is independent (up to homeomorphic isomorphism) of the
choice of basepoint p in X, [3]. We will thus denote the Graev free group over a
topological space by Fgl(X'). Also, because the basepoint of X is the identity of
FEa(X) we will henceforth refer to it as e (or ex ) rather than p.

1.2, Theorem. A fopological space X is funcrionally Hausdorff if and only if Fa(X')
is Hausdorff.

Proof. Recall that a topological space X is called functionally Hausdorfl if any two
points of X can be separated by a continuous real-valued function. This is
equivalent 1o reguiring that X' can be mapped into a Tychonoff space by a
one-to-one continuous function. If Fs(X) is Hausdorff nx is such a function. On
the other hand, if X |5 functionally Hauwsdorff let Fr X = ¥ be one-to-one and
continuous with ¥ Tychonoff; then so also is £: X = 8Y. Let gpy = flex ); Ordman
has shown in [12] that Fa(8Y ) is Hausdorff and we can now consider f to be a map
from X to F5(B8Y). This f lifts to a one-to-one continuous group homomorphism
f:FalX )= Fa(BY) and it follows, since {ex}=f"[legv}], that Fo(X) is Hausdorff.
(We reserve the notation = for inverses in groups, using /™[ | for the inverse image
under a map.)

1.}, Propesition. A topological space X is compleiely regular (withowt Hausdorf) if
and only if ny 1 X = Fol(X) is an embedding.

Proof. See [14, Section 3.1] and note that the restriction flg)=0 is really no
restriction at all,

1.4, Theorem. A ropological space X is Tychonoff (completely regular and Haus-
dorff) if and only if nx : X = Fo(X) i5 a closed embedding.

Proof. See [14, Section 0,2] and [5, Proposition].
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L5, Theorem. [f X" is a closed subspace of a Tvchonoff space X containing the base
point, then the subgroup of F(X') generated by X is closed.

Proof. Let i denote the inclusion of X into BX; then i lifts to a continuous,
one-to-one, group homomorphism ©: Fo(X )= Fo(8X), Let O =]l X'}, then
C is a compact subspace of 8X containing ¢ and thus by [12, Proposition 5.4] (C),

. £
Ty |

O L Fa(BX)

the subgroup generated by C is closed in F{#X ). Considering the commutative
square we see that (X'} = {[{C}] and thus (X" is closed in F5(X).

L.6. Theorem. Let X be a Tychonoff space. then Fo(X ) contains a clozed copy of X"
forevery n,

Proof. The proof for the Graev free group is the same as for the Markov free group
and may be found in [5, Theorem A]. The embedding is defined by

i
(7 {36 i R T e L

L.7. Proposition. F; preserves quotient maps; that is, if 1 X = X' is a quotient map,
then the induced homomorphism f: FlX )= FalX') 15 a quotient map.

Prool, See |14, Section 3.9]. Note that, in fact, f is open.

L8. Remark. By substituting “abelian topological group™ for each occurrence of
“topological group™ in Definition 1.1 one obtains the definition of the Graey free
abelian wpalegical group Z:0X, p). All the theorems of this section also hold for
ZalX, p), with essentially the same proofs.

1. Compact sets and relatively open sets in Fo(X),

We now wish to investigate more closely the topology of Fo(X') and a family of
maps which arses in this investigation. Let Fo{X' ), denote the collection of words
of Fg{X) which have reduced length n. (We will consider ¢ to have length 0.) Let
X" denote a disjoint copy of X and X «, X " the pointed union of X with X °;
then for each n there is a “natural™ map

b (X e XY = Fa(X),
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defined by
LU S g R S LS R

(for each i, &; = £1). The map i, is just the restriction to (X w, X ') of the n-ary
derived multiplication m, : (Fo(X)" = Fa(X) and is therefore continuous. If X
should happen to be compact, then i, is closed and Fsi{X'), carries the quotient
topology determined by f,. In fact, Ordman has shown i, to be a guotient map
under the slightly more general requirement that X be a k,-space. (X is a k_-space
if there is 2 sequence of compact subsets X, of X such that X = 0X, and F= X is
closed if and only if each F X, is closed: see [12, 2]). In Section 4 we show that i,
need not be quotient in general. This 15 in marked contrast to the situation for free
k-groups where i, : k(X0 X 'Y = Fe(X) is always quotient; compare [12].

From now on all spaces are assumed to be Tychonoff. The following twao
propositions are well known,

2.1. Proposition. For each n, Fo{X), it closed in Fg{X).

Proof sketch (sec |5, Proposition for details]), Consider the commutative square

RS )

(BX U, gx~"y Fa(BX)

Clearly Fo(B8X ), 15 compact and hence closed in Fo{gX), and Fgi(X),=
i [FalBX), ).

2.2. Proposition. Every compact subset of Fo(X) is contained in some Fg(X ).

Proof. Consider again the canonical map §: FolX )= Fa(BX): if € is a compact
subset of Fo(X), then f{ﬂ} i5 a compact subset of Fz(BX) Now Fo{3X) is a
k..-space with the Fs(8X ), being the required sequence of compact subsets [12]. It
follows that /() is in some FalBX ), which means that C is in Fo(X ).

From this one concludes that if X is not discrete Fo(X') 5 not locally compact
since any open subset of Fio (X') must contain words of arbitrary length, (Let x, y be
distinct points of X with x not isolated, andxs a net in X'\{x} converging to x. Then
xp-x e in FalX), so y 'y " e and every neighborbood of ¢ contains a
word of length 2n + 2, 50, therefore, does every open set in Fe: (X ). In fact, local
compactness may fail in F(X ), if X is not compact, as we shall show in Example
210 below.
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2.3. Proposition. [f X is a merrizable k,_-space, then every compact subset of Fz(X)

is metrizable.

Proof. (For properties of k.-spaces see [2] or [12]) Wnte X =X then
(XU, X WeiniXiu, X'y s a k. -decomposition, and Fg(X)=
alal(Xe e X3 V] i also. Hence any compact subset of Fs(X) is actually
contained in some L[(X. . X" "] and is thercfore metrizable.

Implicit in the proceeding 15

2.4. Proposition. If X is a k.-space the maps b (X v . X ') = Fo(X). are
COMPact coUering.

Proof. If X is a k-space we know that Fo(X ). carmes the quotient topology
induced by i, and that the sets i, [(X: w. X' "] are a k.-decomposition of Fa(X .
Thus if O is a compact subset of Fe(X ) it is actually contained in some
tu(Xe we X5 V') It follows that C is the image of i} [C]A (X v X35! )5, which is
compact.

The importance of Proposition 2.4 lies in the fact that for X a k.-space it allows
us to characterize the compact subsets of Fg(X') as precisely the images i,[C] of
compact subsets of the (X w, X'V, Since for k.-spaces X, Fo(X ) is a k-space this,
in effect, determings the topology.

Let FelX) denote the "free group™ analogous to FelX) in the category of
k-gproups [12]. The result about Fi(X) which suggested Proposition 2.4 is as
follows: Let X be a k-space. Then each Fr (X ). carries the gquotient topology
induced by i, where the domain carries the & -coreflection of the product topology;
and F (X} is the weak union of the sobsets Fie (X ). It 15 surprising that o test
whether or not a subset of Fx (X), is closed it suffices to check it against only the
sets i [(C w. C 'Y, for € any compact subset of X, rather than against all
compact subgets of Fi(X )., and thus to check if a subset of FelX') is closed it
suffices to check it against all possible sets i, [(€ 1w, €7')"]. All this seems to suggest
some kind of compact-covering property for i,; however, i, does not have to be
compact covering, either for Fi (X)) or for Fx (X), even if X is locally compact, as
the following example shows,

2.5. Example. Let o denote the countable ordinals with the order topology: let A
denote the limit ordinals in w;. The quotient @ /A B compact, butl no compact
subset of wy has wy /A as its image, and thus § $ e = w/ A is not compact covering
[10]. Let X be w, with (a5 basepoint.

In what follows we are deliberately vague about whether i, [(X v, X ")"] carries
the subspace topology from Fiu(X') or Fi (X)) since the argument is valid in both
cases. Now, ary we ;' can be considered 1o be (—ury, w,) with the order topology,
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and so every compact subset of (—wy, an ) = (X w, X"} is contained in a closed
square [—8, ] =[-8, B]. Consider

Y=l a+)|acAluila™, a)lacA}l=(~ao, ).
The map i w; = ¥ defined by

(et a®+2 agA,
fa™, a) oA,

hia)=
is clearly continuous, and therefore the composition

o) > Yoo (—my, H1f2f:[{—ﬂ-‘1. ﬁ'lf]

is continuous alsn, Since every point of A i3 mapped to the identity this composition
factors through w,/A, whence i3(Y) is compact. However no compact C<
[=8. Bl % [=8, #] can have i3(Y) as its image.

We now furn to developing an infernal description of the topology FalX ).
carries if i, is a quotient map. It is based on the following proposition which was
first proved by C. Joiner in [6].

2.6. Proposition. Ler wmx]" x5« +« - «x» be a reduced word of length n in
Fa(X).. Then the sets of the form V{'V3 -+« Vin={y]' - y32 « oo« yio|for each
f yi€ Vi), where Vi is a neighborhood of x; in X, form a neighborhood base for w in
Fa(X ).

It is crucial in this proposition that w has a wniguee representation in Fo(X),. If w
were a word with reduced length less than s, then any open set containing w would,
by the continuity of the multiplication of Fg{X), have to contain such a
VW3 - Ve around epery n-letter represantation of w. We are led to

2.7, Dehimition, Call a subset § of Fg(X ), f-open if for every we§ and every
n-letter representation ' - x3* -+ - x> of w, § contains a set of the form
VitV - o Vi where each Vi is a neighborhood of x, in X w, X7,

In Lemma 2.9 below we show that the collection of F-open subsets of FalX ),
coincides with the quotient topology induced by i, sparing us the necessity of
verifying directly that the J-open sets form a topology.

2.8. Proposition. Every open sel in FglX ), is J-open.

Proof. Immediate from the continuity of i, : (X w. X )" = Fa(X). and the
rectangular nature of open sets in (X w, X ')
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In Section 4 we shall have occasion to use nets which are eventually (frequently)
in every J-open set containing a word w € Fp(X').. Such nets will be called JF-
convergent (J-clustering ), and by Proposition 2.8 they do, in fact, converge (cluster)
in FglX )

2.9. Lemma. Every J-open subset af Fo(X), is open if and only if i is a quotiens
map,

Proof. First suppose that i, is quotient, Let § = F{X), be J-open; we will show
that iy [§] is open in (X w, X' Let

(x3'x3% ... el el [8T;
then xi' - x3 - --- -xx is an a-letter representation of some word w in §.

Since § is J-open there exist neighborhoods V, of &, in X w. X such that
V1'W3E - Wir = 8 But then

Virx Vi x---x Vinci [§]

which is therefore open.

Conversely, suppose that every f-open set is open, that § = Fo(X ), and that
in[5] is open. Let w be a word in § and let x7* - x5, ¢« x% be an n-letter
representation of w, Then

(x}', 233, ..., xm0)eiy [8]

and since iy [S] is open it contains a neighborhood Vi = V52 x---x V5 of
{x1', %3, ... x2"), whence § is J-open and therefore open.

Given Lemma 2.9, it is in fact possible to extend the definition of f~open sets to
all of Fal(X). Let F, denote the set Fs(X), with the quatient topology received
from i,. We have a commutative diagram

(XU Xy = F,
ol ij
I.
(XU X"y ———=F.,,
for each n =0, where p is the map p(x{*, ..., )= (x1, . ... 522 ¢) and g turns

out to be a closed embedding (1o see this, compare Lemma 6.8 of [9], which is
stated there in the k-category but is valid here; the division of 5. [q(F.)]=
(X0, X" into finitely many closed subsets is very similar to the argument in
Proposition 3.2 of [12]).
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Mow since we can treat cach F, as a subset of Fo., e can define a topology,
called the Stopology, on the set F{X) by: a set IF is open in the J-topology
{f-open) if and only if L' n F, is open in F, for each n.

It X is a k-space, the Jiopology coincides with the free group topology on
Fr(X). However, in general the J-topolopgy may be strictly finer than the group
topology, a3 may be seen from the examples in Section 4.

Mow S-convergent (S-clustering) may be defined 1o mean convergent (clustering)
in the J-topolopgy, and it remains true that Seonvergent (J-clustering) nets converge
{cluster) in the group topology on Fa(X)

We now return to the question of the local compactness of Fz(X )., using the
preceeding lemma and the metrizability result above (Proposition 2.3}

2.10. Example. Fa(@) s not locally compact. We actually show that ¢ = does
not have a countable base of neighborhoods in Fz(R) and hence cannot have a
compact neighborhood, since such a compact neighborhood would have o be
metrizable. Now, B is a k,-space, so {; is a quotient map and the open sets in
FoiR); are precisely the J~open sets, Mote also that

D ={{r™", r)|reR\{0}} 2 (0, 03}

i a closed subset of (R ua® ') contained in i3 [e]. A countable Fs(R)k-
neighborhood base at ¢ = 0 would thus induce a countable neighborhood base for
L and that 15 impossible,

X Net convergence in Fe(X),

To analyse further the structure of Fo{X), it will be useful to establish some
properties of nel convergence there, Suppose we have a net (W, Juos with each
Wy € F (X ), which converges to a word w. The w has redouced length =n. [ w has
reduced length precisely i thén [(W,l.cs converges poinfwise by Joiner's
Fundamental Lemma {our Proposition 2.6); however, if w has reduced length less
then n the situation can be considerably more complicated. For, consider the
following sequence in Fz(R )

“--1 it EVEN,
]
W, =

2= nodd.

B s

This sequence converges 1o the singleton word 2, but does not converge pointwise.
Worse vet can happen as we shall see in Example 3.7,

We start owr consideration of convergent nets by showing that a net which
CONVETEEs poiniwise is convergent.



42 T. Fay, E. Ordwmian, B. Smith Thomas | Free wpolegical group

A1, Lemma. If
{ww}ull-{;:r;;:‘ A I:-:.-.lnwl

i & netin Fo(X), such that for cach i, £, is consiant and x,, converges to x, in X, then
(Wa o po cONDERGES to X057 - - X0,

Proof. Multiplication is continuous and X i3 a subspace of F5(X),

3.2. Lemma. Jf

[H'II.I'-IG:H =|:I:¢I|Ii.€| L '.l'::?. :Illl'.I'

netin Fg(X),, then there is @ subnet (Wels. s such that
(i) for all &, ks = k (the words wy have fixed length k).
(i) for each i, ey is constant,
{iii) for each i, either Xz converges in X or it fails even to cluster in X,

Proof. Obvious, but note that the finite word length is crucial.
Mote that condition (jii) above can be replaced (possibly changing the subnet) by
(1) for each i, xx converges in X,

3.3. Definition. Call & net (wa luww in F5l(X ), B-pointwise convergent if it satisfies
conditions (i), (1), and (') above,

34. Example. From Lemma 3.1 we see that 8-pointwise convergence implies
convergence in Fg(8X'); this convergence might be to a word in Fs{8X) having a
reduced form containing only letters from X, (For instance, let v £ XX : the net
Wa = X1af1s could converge S-pointwisc to y - ¥ '=e & Fg (BX 1) However, even
in such a case, S-pointwise convergence of (w,) does not necessarily imply con-
vergence of (w, )} in Fs(X'). For, let X =N, and let ¥ € W\M. Define two nets on N
converging to y in 8% by choosing two distinet points in M from each neighborhood
F of the point y, call them x;r and xsp Then (X! * X35 Jrcaiy I8 & nOn-constant
B-pointwise convergent net in Fiz (M), converging to the identity in F (8M), which
cannot converge in FgiN) since Fg (M) is discrete.

A5, Lemma. Ler (w,)ocw be a et in Fo(X), which converges to w. Then there
exisrs a @ -pointwise convergens subnet (wy oo whose mit in Fo(BX ), reduces to w.

Prool. Using Lemma 3.2 with condition (ii") produces the subnet (ws s, o denote
its limit in Fz(8X) by #. Use the canonical : Fo(X )= Fo(@X) to see that wy =
f{wa}mnvergca to i{w)=w. Thus ¥ reduces to w,

3.6, Corollary. If X is compact Hausdon and if w, = w in Fa(X), then there exists
@ subnet (Welsop Which converges pointwise to a word which reduces to w,
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3.7. Example. The *“f-pointwise convergence™ in Lemma 3.5 cannot be improved
to “pointwise convergence' even for k,-spaces. Let X =R, and consider the
directed set M=k with the lexicographic order. We show below that the net
Way=n " {n+1/}) clusters at ¢ =0, Thus there is a subnet (W, oo Which con-
verges to ¢ =0, but no subnet of (Wa e Can cONverge pointwise 0 a represen-
tative of ¢ in Fs{R). To see that (w,;) clusters at ¢ choose any (Rg, jo) & ™ =M and
choose any open neighborhood UF of e, Mow U7 i J~open so for any s =y there is
an e, 50 thal (n—e, n+e,) " (0 =g, n+e,)= [0 Pick j so that 1/ j < e,.; then

Wy =n (e nte) (g ntE)E U,

and since n > ng, (8, f1= {0 fol
Oine does not alwayvs need to cxpand X “all the way™ to 82X to uze the ideas of
this section. For instance, we will later use;

3.8, Lemma, Lei f: X = Y be a continuous mapping of Tychonoff spaces, so that the
induced homomarphism jF: FolX )= Fa(Y) is alzo continnous. Let (w, loow be a nei
in Fa{X) such that f(wa)ues converges to a point v of Fo{¥Y W{(Fa(X)). Then no
subner of (W, ), cu converges in Fa(X).

Proof. If a subnet {wy e e converged to w e Fo(X), then f{ws) would converge to
j'fn.'] a3 well as to v, 8 contradiction.

4. Concerning Fe: (0}

We are now in a position to explore the topology of F5{Q). We show that the
very nice description of the topology of Fg(X') for k.-spaces (each i, quotient and
F{X) having the weak union topology of the F(X),) fails on both counts for
Fs(Q) We first show that Fi;(0) does not have the weak union topology of the
Fi:(Q), by producing a net which clusters at ¢ = (0 in Fz(0) but whose intersection
with each F(d), is closed.

4.1. Theorem. Fs(Q) doex nor have the weak umion topology induced by (15
subspaces F(Q),.

Prood. For each n &M choose a decreasing sequence (., )ien in @ which converges
in & 1o w/n and such that for all n =1, w/n — 1> g,,1. Give N =8 the lexicographic
order, then the net {Go ke jensn converges to 0 in @, and hence to & =0 in Fa(Q).
Define a second net £ M x M- Fo(Q) by
o

7

Fuj

Al
e

e, [ s
i

where 1// is repeated n times. Now, () clusters at ¢ =0 for if U is an Fg{Q)-
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neighborhood of 0 and if (mo, fo)e N8 then L7 0 is & Q-neighborhood of 0, so
there is an ny > ng such that 1/n,; € L'~ Q. Consider the sequence

e R I
{;n:..l]'rihu—{;'j—_-?- P .;:}
in Fg{Q),+. This sequence converges pointwise to the word
1
— 'U=i.
ny P

and is thus eventually in U n Fg{Q),,.1 = L It follows that the product net

1 1
gty

clusters at g Fs (0. However, forall k=1,

(g - lq}={l';'.-,_| 7

(G - 'rrhﬂ]"ﬁ' Follh+2 = {gay - f.-,;:'.;q__n-:u.;ﬂ_”

which is closed in Fo{Q) -7 (apply Lemma 3.8; the “irrational' points ofn - 1/n
are not there),

Notice that this example already shows that Fsi(Q) does not have the same
topology as Fg (Q),

4.2. Corollary. Fi(0) is not a k-space.

Proof. The set {gn - fa,|(n, j)eNxN] described above meets each F(Q),, and
hence each compact subset of Fg{Q@), in a closed set; yet it is not closed, having
¢ =) as a cluster point,

This corollary is interesting since Q is not only a k-space, but so are its finite
powers; each @ is cven metrizable. Previous examples showing that the free
topological group over a k-space could fail to be a k-space did so by using Theorem
1.6 and finding a finite power X" which was not k.

We turn now 1o showing that i, need not be a quotient map for n = 2.

4.3, Theorem. The map is: (@, Q') = Fo(Q) is not quotient.

Proof. Our strategy is to find a J-closed subset of F(Q): which is not closed. To do
this we find a J-convergent net and a Jclustering net whose product is Fclosed; but
the product must cluster in the group topology and thus cannot be closed there. The
J-convergent (hence convergent) net is the net (g.,) of Theorem 4.1, The J-
clustering net is the net wo,=n"" -(n+(1/§)) of Example 2.7; note thai the
argument that (w.) clusters in Fo{®); is really an argument that {w,,) J-clusters,
and is valid word for word in Fs(Q). The product of these two nets,
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(guy 0" (e + (17000, must eluster at ¢ = 0 by the continuity of the multiplication.
However,

EH::.J-H 1-{ﬂﬂ-%)”=‘('lh.un_i.n*-;l,}!:{ﬂ'upﬂ'l}]

is closed. To see this, note that if (a, b, ¢) i3 & limit paint of the set, we must have
b=n;" for some ms, and thus @ must be a cluster point of {g, | = ng}; the only
such cluster point is m/np, which is not in @. Finally, since i [{gn, - ntaln+
(1/i1}] is closed, but {ga.; - 8" - {n+1/f)} is not, is is not a quotient map.

It is clear that i, i% not a quotient map for p = 3; let the net be
I i S WA T
{q.,, & {”+f} non ; ;}'
adding as many 1/n terms as necessary.

4.4. Theorem. Fq(Q)s is nor a k-gpace,

Proof. We again use the subaet

5 1
F—tqn,,'n '{F:I -l-I}
of Theorem 4,3, We have already established that this set is not closed in Fi: (Q) so
it only remains to show that its intersection with any compact subset C of Fg(Qh s
closed. What we actually show is that if F~ C fails 10 be closed, then C cannot be
compact. 5o let wecl(F nCWF ~C) and let (w, Joes be a net in F O which
converges o w, Each w, is of the form

LN B

CPPRET 1 0 P {ﬂ{ﬂ}""j‘{‘ln—])-
and using Lemma 3.5 we may assume that (w, .. S-poiniwise converges to
1+ X1+ X3=w, where 1y, s, and x; are in 80.

For some ny there are infinitely many j such that (nia), fla))={my, /). For
suppose not, then for each n there are at most finitely many |/ such that
(e k flee )} = (n, j) and it follows that {n{a)+(1/j(a))| o € 2} and {n(a )| a € o} are
disjoint closed discrete subsets of @, Using the normality of O we see that x;&
claafnla)+{1/fla})} and x;&clgalnia)}l are distinet, Now x; must be in §OVQ,
since if it is in @, w, 15 eventually constant, which is impossible, and thus o )=
which also implies that £;& S0V0. Hence x; - x3' + X3 cannot reduce to a word in
F5(Q):. Thus we have established that for some n, there are infinitely many f's.

Hence ¢ contains infinitely many points g, ma’ - ({10 Clearly this
sequence converges in Fo(R) o = /ng - na' - ng= w/ng, and so applying Lemma 3.8
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we see that no subset of (ga,; + mo' © (mo+(1/f)) can converge in Fa(0). Therefore
C is not compact.

We have actually established by this theorem that if n =3, then FalQ), is not a
k-fpace since it containg Fi5(Q); as a closed subspace.

We conclude with two questions suggested by the preceding results. First, every
construction in this section depends heavily on @'s lack of local compactness,
leading to:

4.5. Question. Is i, always a quotient map if X is locally compact?

Second, we know that §, is a closed embedding for all Tyvchonoff spaces X and
that i3 is not a quotient map for X =0.

4.6. Question. Is iz: (0, Q")+ F5(Q): a quotient map? Is i; always a quotient
map?
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