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Byzantine firing squad using
a faulty external source

Edward T. Ordman*
Memphis State University, Memphis TN 38152 U.S.A.

Abstract

Process.

1 Introduction

€ variety of abstractions of

this problem have been made, N ishitani and Honda [NH] provide a good set of citations for one

historical trend, dating back te 1957, in which the Processes are viewed ag abstract automata,
operating synchronously, In a network of initially unknown size and shape, and the goal is to

set their clocks to an identical valye, This is the firing squad problem for graphs. These papers
ordinarily assume that the processes and communications link i

Another abstraction Supposes that the processors or co

and tries to overcome faults in these components. An extreme form of this is to allow the presence
of a limited number of so-called byzantine faulty Processes, processes that may perform arbitrarily

and are not assumed not be locatable by diagnostic tests. Two papers of this type which heavily
motivated the present work are [TPS] and [BL)].

Burns and Lynch [BL] show that given a fully connected network of n, processes, with no more
than f faulty and n > 3f, and ¢l

ocks running synchronously but pnot in initjal agreement, the
clocks can be synchronized; this is the “byzantine firing squad problem”. In [02] this is extended
toa “byzantine firing squad algorithm for graphs” by extending it to g network that is guaranteed
to have more than 3f processes and to have more than 2 f disjoint routes between each pair of
Processes, but where the brocesses do not initially know the total number of processes or have g
map of the graph beyond their immediate neighbors,

The Burns and Lynch algorithm supposes that

at a given time each Process may or may not
receive a START signal from “the outside”; the

goal is to set a time when all processes can

*Partially supported by U.S. National Science Foundation grant number DCR-8503922.
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agree on whether a sufficient number received such a START signal. Their solution, briefly, is to
have each process that receives a START signal notify all the other processes of this fact using a
byzantine agreement algorithm. Their method will work with any byzantine agreement algorithm
with a few standard properties. At the end of a known time after the initial notification, either
all correct processes accept the message or none do. So at certain given times, any correct process
knows how many notifications of START messages have been accepted by all correct processes,
and can use that number as a decision variable (e.g., reset my clock to zero if that number has
just exceeded f + 1 for the first time). This method requires a byzantine agreement algorithm
on a vector, one value for each processor in the system, or equivalently, a number of byzantine
agreement algorithms equal to the number of processes (the latter approach is required in [02],
where the number of processes is initially unknown).

In the present paper we show that only one byzantine agreement process (on one bit) is
necessary, provided that it is slightly modified to treat the “outside world” as an additional
(potentially faulty) process. While this means there are potentially f + 1 faulty processes, this
turns out to be permissible since the extra one does not participate in the entire algorithm, just
the initial part; it does lengthen the byzantine agreement algorithm somewhat since the algorithm
must have length in rounds exceeding the number of faulty processes (see [FLM] for an easy proof),
apparently including the faulty additional "outside” process.

For concreteness we use a byzantine agreement algorithm simplified from that of [02], an
adaptation of that in [TPS]. The broadcast, byzantine agreement, and firing squad algorithms
of [02] are designed to work in a network which is not fully connected and where common
clock settings are not available at the outset. The simplification we use here is for a completely
connected network like that of [BL] or [TPS], but phrased so that a reading of this paper together
with [02] will show how to extend the result to a more general network such as that of [O2].

2 Description of environment

We are given a collection of processes P;,7 = 1,...,n. We assume that each pair of processes is
connected by a two-way communications channel. We will refer to process P; as “process z.”

We assume that at least n — f of the processes are correct, that is, follow the algorithms we
give. The other processes (at most f) are faulty and we do not attempt to control their behaviour.
“Correct process i ...” means “Process P;, assuming it is correct ....”

We assume that n > 3f; see [FLM] for an easy proof that this is needed.
We assume that each correct process P; has the following available to it at all times:
(1) its identifying number ¢ and the number n.

(ii) the ability to tell from which of its neighbors it received a message (hence, a faulty process
cannot lie to its neighbors about its own identity.)

(iit) The maximum number f of faulty processes. (An algorithm designed to defend against
no more than f faulty processes is called an f-resilient algorithm).

We assume a synchronous system in which computation proceeds in rounds. In each round,
each correct process does in order the following:

(1) it receives an arbitrary number of messages from other processes;
(ii) it performs some computation based on its prior state and the messages just received;

(ii1) it sends an arbitrary number of messages to other processes; these messages will be

received at the start of the next round.
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We assume each correct process ¢ has an internal clock which advances once per round; during
any given round process ¢ knows its “internal time” ¢; and this is constant throughout a round.

We do not assume, of course, that the various clocks agree. While we put few restraintg
on faulty processes, we assume that they cannot send so many messages as to overwhelm the
correct processes. We suppose that faulty processes may otherwise act in an arbitrary manner.
In particular they may fail to forward messages, alter them, or invent them; they may brealk
cryptographic codes, forge codes, forge signatures; “wiretap” messages between other pairs of
processes; act cooperatively; pass diagnostic tests but malfunction otherwise; act exactly correctly
throughout or until some critical moment. On the other hand, our upper bound of f faulty
processes is global: at most f processes can be faulty during any part of the algorithms here
described, and a process is counted as a faulty process whether it violates the algorithm in a
trivial single event or is malfunctioning throughout.

We assume that each correct process has an input port from “the outside world” through
which we can provide a message (e.g. a proposed clock setting, or simply a message asking the
processes to synchronize their clocks).

For simplicity in the arguments, we will assume the existence of an external clock C (not
visible to the correct processes) that advances when their clocks do. In addition, we assume that
we are capable of sending messages from the outside world to the correct processes so that these
inputs will arrive in the same round or in a desired set of rounds.

3 A broadcast algorithm for an internal source

When correct process ¢ wishes to send a message, it sends to a neighbor a text string, which may
be arbitrarily encoded. E.g. the text may be a construction containing some basic information (“I
want to synchronize clocks”) plus a number of data items essential to our algorithms, which we
will denote by boldface KEY WORDS. Whenever such a string passes from process ¢ to process
J we say that process { sends it and process j receives it.

A process is said to hear a message if one of the following conditions is met:
(i) it sent it itself in the previous round; or
(ii) it received the message at the start of this round.

Our notation below carefully distinguishes receiving and hearing a message to enable gener-
alization; in the case of a distributed (not completely connected) network, kearing a message is
a more complicated process since it may require receiving copies of the message that have been
forwarded by at least f + 1 disjoint routes [02].

For timing consistency, we may suppose each process sending a message to the others also
sends a copy to itself, receiving it the following round.

We require a way for a correct process to get a message to all correct processes, and to be

confident others have gotten the same message it has. We call the algorithm we need a timed
broadcast algorithm.

For a process i to broadcast a message, it participates in the following timed broadcast algorithm.
It sends the message (INIT “tezt”) to all other processes. Each correct process j stands ready
at all times to do the following;

It saves all messages heard noting in which round (by its local clock) they were received. When
it hears a message of the form (INIT “text”) from process i, it sends (ECHO “tert” at now
— 1 from i) to all other processes. This shows both the originator i of the message being echoed
and the elapsed time (1) since the message was originally sent.
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Process j also echos the message (sends such an ECHO message) if it hears that the same
message has been ECHOed by f + 1 distinct processes. That is, if it hears no INIT of a
particular message from a particular process ¢, but it hears f +1 ECHOs reporting the same text
was originated at the same time (by j’s clock) by the same process i, where these f +1 ECHOs
come from distinct processes, then process  itself sends such an ECHO to all the processes with
an “...at now — e ..." clause telling how long ago the message INIT occurred.

Finally, if a process hears the same message (including the same time of origin) ECHOed by
2f + 1 distinct processes, it accepts the message. )

Now if a correct process broadcasts a message, all correct processes hear the INIT in the next
round and send an ECHO; after the next round every correct process receives at least n — f (at
least 2f + 1) ECHOs and accepts the message.

It is now easy to confirm the following properties (proofs are omitted but are easy and are
very similar to those in [TPS]):

Correctness. If correct process ¢ broadcasts a message in round t (on the external clock}, all
correct processes accept it by round ¢ + 2.

Unforgeability. If correct process j accepts a message from process i and process ¢ is correct,
then ¢ did broadcast that message at the time believed by j.

Relay. If a correct process j accepts a message from a (correct or incorrect) process 1 in
round ¢ (external clock), then all correct processes accept this message (and the same originator
and time of sending) no later than round ¢ + 2.

4 The Byzantine Agreement algorithm

Suppose a process j (not necessarily correct) may have broadcast a message “text” at time t.
We need an algorithm that will let all correct processes settle on a time when they will all
know whether or not j broadcast that message. In other words, the danger in the broadcast
“acceptance” algorithm above is that no matter how long process i walts without accepting the
message from j, it can’t stop and be sure that some other message hasn’t accepted it during the
last round. If it accepts a message and takes some action based on it, it can’t be sure that some
other correct process will not wait a round or two later before acting. Our cure for this problem
is a variation of the byzantine agreement algorithm of [TPS].

Each correct process j acts as follows: if it sent a message (INIT “tezt”) at time t; (on its
local clock), it simultaneously decides to agree that this message was sent and broadcasts during
the same round a message (INIT j agrees j sent “tert” at now — 0). (In fact, since every
sender of the simple INIT must send this, the first message can be interpreted by all to include
the second, and the second needn’t be physically sent). Every other correct process ¢ treats j’s
original (INIT “tezt”) as follows:

BYZANTINE AGREEMENT ALGORITHM:
If. for some p (from 1 to f + 1 inclusive),

‘(8.) i accepts at least p messages of the form (... % agrees j sent “tezt” at now — e) from
,:» <.hstmct processes k, all agreeing on the “text” and the time j sent “text” (as computed by ¢
g the various elapsed times e); and .

) (b) the message ...j agrees j sent ...was broadcast in the same round j reportedly sent
ext™; and

" SC) if p is greater than 1, at least one of the ...k agrees j sent ... messages was broadcast
* cach of the rounds 2, 4,...,(2p — 2) after the initial message from j;
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then process ¢ decides to agree at that time and during round 2p after the initial message
process : broadcasts a message of the form (INIT : agrees j sent “tezt” at now — 2p).

By a proof like that in [TPS] we now have:

Theorem 4.1 If any correct process decides to agree ¢ message was sent, then they all decide 1o
agree no later than 2(f + 1) rounds after the message was sent. 0

Now, if a process has decided to agree that j sent “tezt” at a given time by 2(f +1) after the
given time, we say it actually agrees to that message during round 2(f + 1) after the given time.

(We distinguish decides to agree from agrees). This form of byzantine agreement has the following
nice properties:

Agreement. Either all correct processes agree that j sent “text”

In a given prior round, or
no correct process agrees.

Timed Decision. If all correct processes agree that j sent “text” in a given round, then all
of them first agree to that in the same round, 2(f + 1) rounds after it was sent.

Validity. If j is a correct process and broadcast “text”, all correct processes agree that it did
so; if j is correct and did not broadcast “text”, no correct process agrees that it did so.

5 A basic Firing Squad algorithm

In this section we restate and specialize a (much more general) firing squad algorithm due to [BL)].
Suppose that in a given round ¢ (as viewed by the outside clock) we send a signal START from
the outside to some (possibly none) of the processes. Each correct process j receiving a START
from the outside world broadcasts (INTT START) and begins a byzantine agreement algorithm.
If any correct process receives a START, all correct processes will decide to agree to that fact
and will agree to it in round ¢ + 2(f 4+ 1). Accordingly, in any round in which a correct process
agrees to any START message, it should check and see how many distinct START messages it
is agreeing to at this time. For instance, consider what we will call “Algorithm 1”:

ALGORITHM 1: following the first round in which a process agrees to at least f 4 1
START messages, it sets its clock to 0 for the start of the next round. ]

This is a restatement of the algorithm of Burns and Lynch, for this particular byzantine

agreement algorithm; they state it more generally and carefully compute the complexity (number
of bits of messages required).

Since in any given round all correct processes agree to anything any one of them does, we
immediately see that Algorithm I has the following properties:

Time Agreement. If any correct process sets its clock to 0 as a result of Algorithm 1, all
other correct processes also do so in the same round.

Safety. No correct process sets its clock to 0 as a result of Algorithm I unless at least 1 correct

process received a START signal from outside, (For if none did, at most the f faulty processes
broadcast START).

Liveness. If 2f + 1 processes received START signals from outside at the start of round ¢,
then all correct processes set their clocks to 0 at the start of round ¢+ 2(f + 1) + 1. (For at least ’
f+ 1 correct processes received and broadcast a START signal)

Burns and Lynch point out that variations are possible. For example, they classify the above
as a Strict algorithm because of the Safety property. For a Permissive algorithm, we could
abandon the need for Safety and synchronize on the agreement to any one START signal (so
that sending f + 1 from outside would guarantee synchronization). ’
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6 Using an outside participant

We now show how to use just one (slightly modified) byzantine agreement algorithm instead of
requiring one for each process (or at least each START signal, as Algorithm 1 did. Instead of
trying to reach agreement on a number of messages (...7 sent START at now — ¢) we can
reach agreement on the single message (OUTSIDE sent START at now — e). Suppose each
process receiving START treats it as (INIT START) received from a process numbered zero
(the OUTSIDE process), and immediately echos it. It also supposes receipt of the usual (INIT
0 agrees 0 sent ...) message. All algorithms proceed as usual; in counting f + 1 or 2f + 1
copies of messages the ones from OUTSIDE are not counted. The proofs that the broadcast and
byzantine agreement algorithms work go through as usual (the OUTSIDE may be correct or
faulty) with one exception: in the byzantine agreement algorithm and Theorem 4.1, there are now
potentially f + 1 faulty processes counting the OUTSIDE. We will see that agreement cannot
be relied on before round (2f + 2) + 1 after the message is sent, and synchronization occurs in
round (2f + 2) + 2 after the START signals are sent from OUTSIDE.

- We need to provide a modification of the byzantine agreement algorithm for the special case
when the broadcaster is OUTSIDE. Any correct process recetving an appropriate signal (such
as START) on its line from outside the network will treat this as if it is a correctly formatted
message of the form (INIT START) from process 0. It will also act as if this were followed the
next time by a correctly formatted ECHO from process 0. That is, each correct process receiving
a START acts as if it came from a correct neighbor; each correct process not receiving a START
acts as if it had a neighbor with identifier zero that was dead and nonresponsive (hence faulty).
In fact, this produces the desired result for a "strict” firing squad algorithm, in a sense that will
shortly become clear. We summarize the following arguments adapted from [TPS]:

Lemma 6.1 If ot least 2f + 1 START signals are sent from the outside in a given round, all
correct processes will accept a START signal from process 0 after 3 rounds. If no START signals
are sent in a given round, no correct process will accept ¢ START signal 3 rounds later.

PrROOF: If 2f 4+ 1 START signals are sent from outside in round ¢ (by the external clock),
then at least f+ 1 are received by correct processes: so these f + 1 processes ECHO the message
in round ¢ + 1. Thus all correct processes hear f + 1 ECHOs and issue their own ECHO by
round £ + 2, and all correct processes accept the message by round ¢ + 3. If no START signal
is sent from outside, no correct process receives one. At most f processes, all faulty, can send
ECHOs, so no correct process accepts the message. o

It is now clear how to modify the timed byzantine agreement algorithm. The correct processes
must decide if they agree that (...0 sent START... ). Again, each process receiving a START
from outside acts as if it simultaneously received from process 0 a message (INIT 0 agrees 0
sent START at now — 0). It is this message, rather than the simple START, which is actually
forwarded for potential agreement. The process is now exactly as in the byzantine agreement
algorithm of Section 4, but with p = 1 to f+2instead of p=1 to f + 1, decisions to agree taken
at times 2+ 1, 4+ 1, 6+ 1, and so on, and with the final agreeing taking place 2(f + 2) + 1 rounds
following the given round. The offset of 1 is because accepting the first message from outside
may take 3 rounds instead of 2 (the outside world is to have its message accepted even if it sends
START to just f + 1 correct processes instead of to all correct processes). The need for 2(f + 2)
instead of 2(f + 1) follows from the addition of the new possibly faulty “outside” process. This
will be clear if we restate part of the proof that the byzantine agreement algorithm works.

Lemma 6.2 If no correct process decides to agree that (...0 sent START ... ) by time
2f+1)+1 after START was allegedly sent, no correct process will subsequently decide to agree.

—_— *A
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PROOF: A correct process can decide to agree only if it accepts at least one (.
sent START at now — ... ) broadcast at each of the times 0,241, 441,..
decides. If the present is past 2(f 4 1)+ 1 (relative to the initial message)
distinct processes have broadcast (... k agrees ...)
processes plus the outside process: so at most f+1
Hence, a correct process arriving at time 2(
to agree.

-k agrees ()
- up to the tine j,
this requires that f+02
messages. But there are at most J fauly
can have done so if no correct Process ha.

as.
f+2)4+1 without deciding to agree will never decide

G

Lemma 6.3 If any correct process decides to agree that “..0 sent START... "~
2f + 1) + 1 rounds after it was sent, then ever
2(f +2)+1 after it was sent.

no later they
y correct process decides to agree by round

PROOF:  If any correct process j decides to agree, say in round 2s + 1, this means it has
accepted a (...0 agrees 0 sent START...) message which was broadcast at round 0 relative tq
the START, and has accepted at least s — 1 other (--.7 agrees 0 sent START. .. ) messages,
one broadcast at each of the times 2 +1,4+41,...,2(s~ 1)+ 1. By the Relay property of the
broadcast algorithm, every correct process will have accepted all of these by time 2(s +1) + 1; by
the Correctness property, all correct processes accept the message (... j agrees ( sent START

...}, broadcast in round 2s + 1, by round 2(s+1) +1; this is enough to make all correct processes
decide to agree in that round. O

zantine firing squad algorithm needing approximately as
reement algorithm, rather than approximately n times

Thus we have achieved a “strict” by

many messages as a single byzantine ag

as
many.

7 A permissive algorithm and other modifications

The above method works well for a strict algorithm and for the case when we only worry about
counting messages resulting from actual START messages from “outside”
[BL] also treat the questions of Inessages resulting from false “START”
the faulty processes and permissive algorithms.

in a single round.
messages originated by

In the permissive case, we want the sending of f + 1 START messages from outside to
guarantee synchronization. In exchange, we must accept the fact that the faulty processes can
force a synchronization by themselves. Again, the modification is easy. If f + 1 START signals
are sent from outside, at least one correct process j will receive one. That process can broadcast
(...j agrees 0 sent START at now — 1) Any correct process accepting any message of that
form can translate the first such message it accepts to include the message ( ...0 agrees § sent
START at [the same time] ). Thus every correct message will promptly decide to agree and

synchronization will occur as desired. Of course, any faulty process could do the same thing at
any time and force synchronization.

Permitting START signals to arrive at different ti
have a strict algorithm in which the START si
is, synchronization is permitted if any one START signal arrives from outside and may occur
2(f+2)+1 or more rounds after any signal is received; if at least 2 f+1 START signals are sent
from outside, synchronization must occur within 2(f + 2) + 1 rounds after signal number 2f + 1.
(This flexibility is required since the synchronization will occur 2(f + 2) 4+ 1 rounds after the
f + 1-st process announces it has received a START; but that process may be faulty, and up to
f of the START signals may go to faulty processes.) To achieve this, we simply “latch” START
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START in the same round (which cannot happen until one correct process receives a START,
and must happen once 2f + 1 processes receive STARTS), it is guaranteed that synchronization
will occur 2(f + 2) + 1 rounds later.

The strategy of the previous paragraph would be most inefficient if it actually required re-
peating all the needed messages in each round. Luckily, we need not. Any process accepting any
START as having been sent at time (...now — ...} will also accept that it has been sent
“again” at each time following that. Hence any message relevant to accepting or agreeing to a
START need in fact be sent only once; all processes can regard it as being received repeatedly
in each round thereafter.

Finally, can we reduce the message load induced by spurious messages started by the faulty
processes? Doing this thoroughly requires further analysis: how soon can correct processes recog-
nize faulty processes and begin to ignore messages from them? This appears to be an interesting
question even in a fully connected network and extremely difficult in a truly distributed network.
The method of [TPS] causes a byzantine agreement algorithm to stop earlier than the form here
if several faulty processes behave themselves for part of the algorithm. That is, the process stops
after 2(k + 2)d + 1 rounds unless more than & processes malfunction in a particular way during
the algorithm. This feature of the [TPS] algorithm has been eliminated in the version here for
brevity, but is easy to restore. Note that we could not actually use the early-stopping in the
present application, since we needed a fixed stopping time for the algorithm. Different correct
processes may observe different numbers of faulty processes (a faulty process may appear correct
to one correct process and faulty to another) and may decide whether or not to agree at different
times in the [TPS) version. We need to postpone the agreement to the correct time, for the firing
squad result to hold; but the earlier “decision time” in the [TPS] algorithm is a time after which
no further messages need be forwarded if the process has decided not to agree. (If it has decided
to agree, it must forward messages necessary to helping other correct processes agree).
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