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CO:VERGENCE AND ABSTRACT SPACES
IN FUNCTIONAL ANALYSIS'®

Edward T. Ordman

INTRODUCTION.

Since there are many notions of '‘convergence' for sequences of functions,

0.

it is tempting to use "convergence' rather than "open set'" as a primitive con-

cept in many problems of topology and functional analysis. The last five to

ten years have seen substantial development of the theory of "limit spaces',

spaces in which only a notion of convergence is given, This paper is an attempt

to collect a few of the more important and interesting applications of the use

of convergence as a primitive notion.

Earlier writers have used both nets and filters, and conditions often may

er. Therefore, an initial

be expressed more easily in terms of one than the oth

section has been devoted to a condensed development of both nets and filters and

the relationship between them. While later in the paper ""convergence' is thought

of in terms of '"convergence of nets'", filters are used freely in stating condi-

tions and giving examples. The reader should be warned that terminology has been

adapted somewhat, e.g. # space here denotes a space with convergent nets rather

that the usual convergent 4equencesds

In the second section, several of the definitions that have been given for

limit spaces are stated and compared, including initial standards that a limit

space be a topological space, i.e., that there be a topology whose induced con-

vergence is the one originally given. It is of interest that there are in fact

important notions of convergence which are not induced by any topology.

While the second section discusses topologies only briefly, the third gives

a brief introduction to general topology from a limit space point of view. An

attempt has been made to weaken hypotheses of some standard theorems, although
usually not as far as possible (in many cases this author is uncertain how weak
indicate beginnings in many

the hypotheses may be). A decision has been made to

areas of topology, rather than to develop one or a few at greater length.

The remainder of the paper is devoted to the more complex structures of

functional analysis, with an eye especially on functjon spaces. In particular,

a notion of convergence on a set may correspond to the notion of convergence in-

duced by a linear topological space, metric space or

IThis paper will be in two parts. Part 2 will appear

normed space; a few tests

in Vol.2,No.1, tarch, 1970.
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80 ORDMAN

are given for examining such structures. The fourth section is concerned with
notions of linearity, metrizability, and boundedness; the fifth with convexity
and normability (the fourth and fifth sections will be in part 2).
A striking motivation for some of the topics to be discussed will be seen
in the following theorem, \which follows fairly easily from later parts of the

paper:

0.1. THEOREM. Cons
the nreals, omitting nonme
determines a normed Line
pseudo-metrnizable but non
tions equak, L.e., are Ld
ence determines a non-m
convergence almost everyw

den the space of bounded functions grom the reals into
wwble functions in b. Then (a) wiiform convergence
space (5.17), (b) convergence in measure detfermines a
noamable Linearn topological space (metrnizablfe if func-
ntigied) (4.16, 5.9, 5.11, A), (c) pointwise converg-
(zable Linearn topological space (4.5, 4.10) and (d)
ere 48 not equivalent to the convengence determined by
any topolLogy on the space (2.18).
1. NETS AND FILTERS.
1.1. NETS. A dinrected set (D,2) is a nonvoid set partially ordered by
transitive and reflexive relation 2 such that for every a, b € D there is a ¢ € D
satisfying ¢ 2 a, ¢ 2b. |A net {fd,D,Z} in a set X is a function f(d), also de-
n denoted {f;,d € D} or simply f. A subset of D which
ch a in D is cofinal; fy is frequently in A if fq €A
set of D, and evenfually in A if f, € A for all a fol-

The notation f,; will be reserved for sequences (nets

noted fd:D -+ X; it is oft
includes some b = a for e
for all a in a cofinal su
lowing some fixed b € D.
whose domain is the natur
A net {T,,e € E,>} i

in D which eventually fol

1 numbers).

a subnet of {Sy,d € D,2} if there is a net {Ry,e € E, >}
ows each point of D (i.e., for a € D there is b € E such
that e > b implies Re 2 a)| such that R satisfies the condition T = SR (i.e., Ty =
T(e) = S(R(e)) = S(Ry)).
ship to that of S; however, the range of T will be a subset of the range of S. It
will occasionally be convenient to say that R subordinates T to S.

The domain of T thus need not have any apparent relation-

Suppose (D;,>;) is a directed set for each i in an index set I. The product

dinected set N;D; is ordered componentwise: we write x(lj>j)y, or simply x >y,

if for each component xj

directed set since an upper bound to two elements may be found componentwise. In

i Yi- This is clearly a partial order, and gives a

particular, we write (D,2)x(E,<) = (DxE,2<). If for each i {S;,D;,2;} is a net
in X;, the product net {IIS;,lD;,N2;} is a net in IIX;. We also make the following

notational convention: if {f,D} and {g,E} are nets in X and p(a,b) is a function
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of domain X, then p(fy,g.) will denote {p(£f4,g¢),(d,e
(i.e., the subscripts are to be chosen independently).
p(fd,gd) will always mean {p(fd,gd); d € D}; the domaj
factor.
1.2. FILTERS.
empty subsets of X such that the intersection of two
of the collection.
superset of a set it contains. We shall occasionally

""filter base' when the distinction is insignificant.

81

€ DxE}, even if U = E
On the other hand,

n of the net has only one

A §iLten base in a set X is a nonempty collection of non-

nembers contains a member

A 4ilten is a filter base which in addition contains every

say 'filter'" instead of

If A is a subset of X,

(B: ACB c X} is the filter based on A; {B: x € B < X} is based on x. Lovever,

a filter not based on any set need have no smallest set.

If for two filters F,

G, F < G, then G is f{inen than F (G contains more set$; it may be thought of as

a "subfilter" of F). Clearly the intersection of two

is again a filter, having fewer sets (coarser) than either initial filter.

filter is said to be eventually {n A if A is a set of
of terminology, a filter F is f§requently An A if A in
A class of filters may in fact contain the inter
in it and every filter finer than any filter in it; t
simple filter, such a class will be called an Ldeal .
Let F; be a filter in X; for i in some index set;
in TX; has as base the collection of sets of the form
from Fi and F; = X;

1.3. RELATIONSHIPS BETWEEN NETS AND FILTERS.
set and for each d in D let Dy = {g € D: g =2 d}.

except for finitely many 1i.

(
The
Dg © Dg N Deg so the sets Dy form a filter base in D.
ter base, {F,c} is a directed set, since two elements
intersection. (b) Let {S,D} be a net in X and consid
g = d}.
the filtern associated with S.

will be shown that the filter associated with T is fi

These sets form a filter base in X; the filt

If T is a subnet of S,

Conversely, let F be a filter in X and for e
This net (which

with S.
fp € F; then {fp,F,c} is a net in X.
net assoclated with F.
fG € G CF.
ed with it.

It is eventually in each set
Similarly, any net is eventually in each
(c) For any filter F we may construct a
filter associated with S; this illustrates a complica

D be the set of all doubles (x,F) such that F is in F

o

m

D is directed: N

ted net construction.

(x,F) = (y,G) iff FcG. (z, 5) fo

(or finitely many) filters
A
the filter; by a stretch

tersects each set of F.
section of any two filters

b avoid confusion with a

The product fclien I

IF;, where each Fj comes

i

h) Let (D,2) be a directed

hif f 2d, £f 2 e, we have

Conversely, if F is a fil-
of F are followed by their

er the sets S(Dy) = {Sg:

er of supersets is called

range T < range S and it

her than that associated

ach F € F choose some point

is not unique) is called a

of F, since G < F implies

set of the filter associat-

net S such that F is the

Let

and x is in F. Define

llows (x,F) and (y,G).
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Now define the function S(x,F) = x; S is a net on D into X. Further, for any

(x,F) in D, D(x F) includes at least all points of the form (y,F) for y € F and
¥

thus S(D(x,F)) = F. Thus
Len is a filter which cont
A of X. A wlversal nel
for each subset A of X.

and the filter associated
a set with only one point
single set.

set. Thus knowing the rar

(d) An wltragil-

tains either A or the complement of A for each subset

the filter associated with S is F.

is a net which is eventually in A or its complement

The net associated with an ultrafilter is universal,

with a universal net is an ultrafilter. (e) Let X be

The only possible filter on X contains X as its

There are however infinitely many nets in X, one for each directed

1ge of a net tells little about its domain; in this

sense nets are more general than filters.

1.4. LEMMA.

than F.

14 F il

Suppose neither A noj
intersect A, since otherw]
Let F, = {ANF: F¢€ Fi.

each set of F as well as

1.5. THEOREM.
Consider the class o
Let Fa, Fb, Fc,
linearly ordered by ©); f

tveny
¢+ be a1

F, are in the largest Fi i
nonempty). Hence, {F,;F;
which is an upper bound f
that there is at least ong

by 1.4, this filter must |

1.6. LEMMA. Let F
Ly in each set of F. Thet

(F,© is directed; d
F € F, S, € F} as directe
directed set, suppose (m,
FNG. Then (q, F N G) i
is eventually beyond each

each F in F, since if S

1.7. THEOREM. Even

b not an ultrafiliten, there is a giltern strhictly ginern

r CA (the complement of A) is in F. Each set in F must
ise one would be a subset of CA and F would contain CA.
This is clearly a base for a filter which contains

the set A, and thus is strictly finer than F.

y glten F is contained in an ultrhagilien.

f filters finer than F; it is nonempty (containing F).
nest (finite or infinite) of such filters (i.e., be

F

oo e
3

pbr finitely many sets Fl, each in some Fi’ all

n’
snd hence their intersection is (so the intersection is
€ Fa for each i and some a} is a base for a filter

br the nest. We may now apply Zorn's Lemma to assert
» maximal filter in the class of filters finer that F;

be an ultrafilter.

be a §ilter and S a net 4in X, and suppose S A8 grequent-
1 S has a subnet which 44 eventually in each set of F.
enote S by {S4,D,2}. Let E be the set {(m,F):m € D,

d by the product order 2 c of DxF; to show this is a

S €

q
P

F) and (n,G) are in E, let p 2 m,n and q 2 p s.t.

5 the desired upper bound. Define on E P(m,F) = m;

d in D, so S*P is a subnet of S. S+P is eventually in

is in F, (n,G) =2 < (m,F) implies S*P(n,G) = Sn € GCF.

y net has a universal subneft.
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Consider the class of filters F such that the neft S is frequently in each
set of F. By the argument of 1.5, this class has a maximal element. Now we ap-
ply 1.4 to show that this maximal filter is an ultrafilter. Call the maximal
filter F and éuppose F contains neither A nor CA for jsome A < X. S is then fre-
quently in each set of FA = {F N A} or each set of FCA; if not, S is eventually
outside of some F N A and eventually outside some G 1| CA, hence eventually out-
side (FNA) U (GNCA) DFNG, acontradiction singe F N G € F (and by hypothe-
sis S is frequently in each set of F). Thus the supposition that F is maximal
and that F contains neither A nor CA conflict, so F must be an ultrafilter. Then
by Lemma 1.6 S has a subnet which is eventually in edch set of F, and by 1.3(d)

that subnet is universal.

1.8. THEOREM. Let T = S+N be a subnet of the Het S .in X and denote by
F(S) and F(T) the associated filtens. Then T is eventually in each set o4 F(S);
that is, F(T) 48 finen than F(S).

Every set of F(S) contains a base set, of form {Sg: g 2d € DS}. There 1is
some n in Dy = Dy such that for m 2 n, N, 2 d, and hence Ty = S*Np € {Sg: g = d}.
Thus T is eventually in that set, and that set must contain a basis set of F(T)

and thus belong to F(T).

1.9. THEOREM. Let T and S be nets <n X and F(T) be ginen than F(5). Then
T has a subnet which <4 also a subnet of S. (In gengral T is not a subnet of 5
since its range may not be a subnet of that of S).
Let S have domain (D,2), T domain (E,>). Let F|= {(d,e) € DxE: Te = Sal-
We must show that F is directed by the product order|2> of DxE. In fact, suppose
(d,e) and (f,g) are in F; let h =2 d,f and k > e,g. By hypothesis there ism > k
such that T € {S;: n=2 h}, i.e., for some n 2 h, Tp|= Sp. Thus (n,m) is in F
and follows (d,e) and (f,g), so F is directed. Now let Pl(d,e) = d, Pz(d,e) = e,
so that S-Pl(d,e) =854 =Tg = T-Pz(d,e) throughout F{ It is clear that P1 is
eventually beyond each point of D; similarly for PZ. Hence S-P1 and T-P2 are sub-
nets of S and T which are identical (i.e., have the same domain and same values

on it),

1.10. THEOREM. Let S be a net, F and G §iltens|in X. Suppose S {8 frequent-
Ly in each set of F nG. Then some subnet of S s epentually in each set of F on
eventually in each set of G.

For each F € Fand G € G, F UG is in Fn G so § is frequently in F U G. Thus
S is frequently in F or frequently in G; suppose it fails to be frequently in F.

then for every G1 € G, S is frequently in F U Gl’ hence in Gl' Thus S is fre-
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quently in every F € F or

to find a subnet eventuall

1.11. THEOREM.
than LX.

Clearly if a set is i

A g4

versely, let A be in each
CA so {FNCA: F€F} is 4
filter finer than it, we ¢
Thus

}

A, a contradiction.

2. LIMIT SPACES

2.1. DEFINITIONS ANI

in terms of sequences (e.g.

filters (e.g., Choquet, Fi

but some attempt will be m

q

B
The pai
Not

A convengence for a
is a net in X and x is a
x(C) or S » x(C).
to C will be omitted.
ordered pairs, allows extr
or ""a constant net converg

Usually the minimum 1
Frechet (customarily for §
net) converges to x, and
the net does. (Either may
working with sequences) c3
converg to x, then it has
developed extensively two
a simple neighborhood stry
there is a filter N(x) of

X, such that the net conve

neighborhood of the systen.

the neighborhood system).
standard.

Fischer's broader axi
ideal: the space is a J 4/
is an ideal N(x) of filterx

ORDMAN

frequently in every G € G, so we may apply Lemma 1.6

ly in each set of one or the other filter.

[Lten is the internsection of all ultrhafiliens finen

n the filter F, it is in all finer ultrafilters. Con-

ultrafilter but not in F; then each F in F intersects

base for a filter finer than F. Picking any ultra-
et an ultrafilter finer than F which does not contain

F must contain A.

REMARKS.

, Frechet, Kuratowski) and more recently in terms of

Historically limit spaces have been defined
scher). The following will be based largely on nets,
ade to connect net-based with filter-based theory.

et X is a collection C of ordered pairs (S,x) where S
oint in X. Then x is a £umit of S(C), S converges to
r (X,C) will be called a £imit space; often reference
e that this definition, allowing an arbitrary set of

emely wild notions of convergence; ''no net converges'
es to every point" are examples.

estrictions desired are those placed on an & 4pace by

equences): (a) any net whose range is {x} (a constant

b) a subnet of a convergent net converges to any limits

of course also have other limits). Kuratowski (also
lled an #-space an £L*-4pace if (c) if a net fails to
a subnet no subnet of which converges to x. Fischer
filter-based spaces, the more restricted of which was
cture: a space is 7, if (1) for each point x in X,
supersets of {x}, called a system of neighborhoods of
rges to x if and only if it is eventually in each
(Fischer had as convergent filters those finer than

It should be noted that the notation't?f’ is non-

om required merely that the convergent filters form an
ace if it satisfies (2) for each point x in X, there
s N(x) (called pseudo-neighborhood system) such that a



CONVERGENCE AND ABSTRACT SPACES

net converges to x if and only if there is some pseudo
such that the net is eventually in each pseudo-neighbo
particular, N(x) must contain the filter of supersets
that the constant nets converge). Choquet, working wit
initially determine convergence only for ultrafilters
filter converge to x if each finer ultrfilter does.
for nets (since a universal net can have proper subnet
versal net converge to x whenever any subnet did, and t
net converge whenever every universal subnet of it doe
section, the reader should have little difficulty in 1
to #* convergence.

2.2. ELEMENTARY RELATIONS. The rest of this seg
establishing implications between the above axioms and
to them the notion of a topological space. We begin
les. (a) Let X be nonempty and C void. X is a limit
X be the real line R; let constant nets converge and
together with its subnets (which are in general not sg
This space is #; it is not #£* or J since the sequence
verge (each subnet of it has a subnet in common with 1

is event

!
L

verges to 0, so X is not £*, and 0, 1, 2, --
pseudo-neighhorhood that 1, 2, 3, «*+ is eventually 1if
is clear that a J, space is a J space; the ideal cons]
filter together with all finer filters. A J space is
stant nets converge and (b) a subnet eventually is in
net is eventually in. (d) A J, space is an #* space;

with axiom 2.1 (c). If a net fails to converg to Xx, |}

some neighborhood of x and thus has a subnet which is

=Y
=

neighborhood; any sub-subnet would also remain outsid

fail to converge. An #* space 1s an £ space by definj
2.3. EXAMPLE. A J 4pace need not be £*.
Define N to be a class containing all ultrafiltelr

t
1

tions of ultrafilters. Let X be the real line and le
ever its range is {x} and to O whenever it is eventua
filter in N. N clearly contains finite intersections
h

S

filters finer than its members since a filter finer t
ultrafilters is merely an intersection of some of tho

It is also [c

(

proved rigorously, using 1.10 and 1.11).

ter {X} is not a finite intersection of ultrafilters

85

-neighborhood system N(x)
rhood of the system. In
of {x} (this guarantees

h filters, proposes to
and then to let an arbitrary

An equivalent definition

s) would be to let a uni-
hen to let an arbitrary
s. After the rest of this

elating Choquet convergence

tion will be devoted to
introducing and relating
ith some elementary examp-
space but is not . (b) Let
he sequence 1, 2, 3, *°*
quences) converge to Zzero.
0, 1, 2,

, 2, 3, +++ which thus con-

fails to con-

ually in any hypothetical
, so X is not J). (c) It
sts of the neighborhood

an # space since (a) con-
any pseudo-neighborhood the
the only difficulty arises
t is frequently outside
eventually outside that

the neighborhood and thus

tion.

s and all finite intersec-

a net converge to X when-

ly in each set of some

of its members; it contains
an a finite intersection of
e ultrafilters (this may be
lear that the trivial fil-

to show it is not an inter-
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section of n ultrafilters, divide the line into n+l disjoint parts; each filter
contains exactly one of those parts).

Now let D be the set|of ordered pairs of real numbers (r,s), with order
(r,s) =2 (p,q) iff s 2 q, and define P(r,s) = r. The net P is frequently in every
set, so it does not convenge to 0; however, every subnet of P has a universal sub-
net, which must converge to 0. The space is therefore J but not £*.

2.4. EXAMPLE. An ' space need not be 7.

Again let X be the real line, constant nets converge, and also let any net

which is eventually in some finite set converge to 0 (in particular, any constant

net ~onverges to 0). If X were T each neighborhood of 0 would have to contain

each point of the line (since constant nets converge to 0), an absurdity. On the
other hand, the convergence is clearly «£* with respect to points other than O,
and if a net S fails to converge to 0 we need only ncte that the collection of
complements of finite sets is a filter. Then S is frequently in each set of the
filter, so it has a subnet which is eventually in each set of the filter; clearly

no sub-subnet can converge to zero. Hence, X is #£* but not 2%

2.5. THEOREM. An

tial notion of the implic

space 48 always a J space (this gives at least a par-
tions of the '"subnet-of-a-subnet" requirement).

It is necessary for us to exhibit the class N(x) of preudo-neighborhood sys-
converging to x, denote the associated filter by F(S).

all such F(S), and show it is the desired N(x). Clearly

tems at x. For each net
Now consider the class of
if a net T converges to x, it is eventually in each set of a psuedo-neighborhood
system F(T); conversely, if a net T is eventually in each set of F(S) (or any
finer filter), then by TH

than that of S and thus b

OREM 1.8 any subnet of T has an associated filter finer
THEOREM 1.9 has a subnet in common with S. That sub-
net converges to x since $ does, and thus since the space is «#* T must converge
to x. Finally, the intersection of two members of N(x) is a member by application
of THEOREM 1.10 and the f
ed filter is the original
2.6. SUMMARY. We h

conclusive order among a

ct that a net can be found in any filter whose associat-
one (by 1.3 (c)).

ve now given proofs and counterexamples to establish a
umber of axiom systems on a limit space. In order of
increasing restrictiveness are limit spaces, £ spaces, J spaces, £* spaces, and
7, spaces; each condition|implies those preceding it and none implies any follow-
ing it. In the following some attempts have been made to use weaker rather than
stronger spaces in hypotheses, but it is not asserted that the weakest available
space has been used (this|writer is in some cases uncertain).

2.7. REMARKS AND DEFINITIONS. We now examine some restrictions on limit
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spaces which are usually not directly expressible in f
In particular, we develop what are ordinarily taken ag
point set topology, e.g., open and closed sets and cl¢

A point x will be said to be 4intercor to a set A

X is eventually in A.

(but not necessarily to a pseudo-neighborhood); in any

called a neighborhood of x. A set all of whose point

open; a set which contains every limit of all nets in
A set X may have nets in it converging to points outs
gether with such points (if any) is the closure of X,
if and only
the closure of X is not itself a closed set.
2.8. EXAMPLE. In aJ, space, the closure of a
Let X be the set of real numbers. For x real an
let K.(x) be the set of all real y such that Ix—y! <
zero. Call the collection of all K.(x) for fixed x a
filter N(x); the result is a J& space, in which no no
Let A b

(0,1); then A = (0,1) but A= [0,1], so A is not clos

of rational numbers converges to a rational.

It is interesting that the operation of ''weak 1li
theorem of Nikodym, leads to a J space in which even

need not yield a closed set.

2.9. THEOREM.
open sets 44 open (in any limit space).

Any union of open sets L& open;

Let A; be any union of open sets, and let x be a
x is in one of the A;, so a net converging to X is ev
let A and B be

the union. For the second statement,

their intersection. A net converging to Xx is eventua

B, hence eventually in their intersection.

2.10. THEOREM. In any Zimit space, the complem
In an £ space, the complfement of a closed set is open

Let A be open; denote its complement CA. A net
verge to a point of A since it fails to be eventually
net is in CA and CA is closed. Conversely, let A be
converging to a point x of CA. If S is frequently in
ally in A which also converges to x, impossible since

eventually be in CA.

b
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terms of nets or filters.

; the basic concepts of

if it is equal to its closure; it should 1

closed and let

bsure operations.

if any net converging to

Thus x is interior to any neighborhood of x in a J, space

v space, A will loosely be
5 are interior 1is called

the set is called closed.

ide X; the set taken to-
denoted X. A set is closed

be noted that in general

set need not be closed.

d r positive and rational,
r and x-y is irrational or
base for the neighborhood
t-eventually-constant net

e the set of rationals in

ed.

near closure'', due to a

countably many closures

the internsection of we

point of the union; then

entually in A; and thus in

open and x an element of

11y in A and eventually in

ent of an open set is closed.

entirely in CA cannot con-

in A; thus any limit of the
S be a net
it has a subnet eventu-

Thus S must

A,

A is closed.
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2.11. THEOREM.
0§ x intensects A.

A net S in A convergs
(N(
Then the net {xy,N

neighborhood meets A.
N NA.

2.12. THEOREM. 1In ¢
subset A of X, A = A, and
gilten N(x).

(a) implies (b): By 2

must show that an arbitrax

X € Nsox € CN and x ¢ CN.

thus is an open neighborhg
X E.i. Any neighborhood N
sects A and we may pick a
tains a set of N(y), hencs
closed.
2.13.

the requirements for a top

DEFINITIONS AN

fined by giving a class t
intersection of sets of t
x whenever the net is even
shown that the sets of t 4
(b) will hold and the equi

2.14. THEOREM. Left
ditions of 2.13, t 48 the
| Each set of t is open
is any open set and x is i
tained in A; the union of
to t, so A is in t.

We will occasionally
vergence as in 2.12 - 2.13
(X,t), where t is the clag

2.15. REMARKS. THE(Q
and sufficient conditions
set of conditions which wi
of the condition (the itex

ciding that a space is £*

In d
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L 7, space, x 4s in A i and only 4if each neighborhood

s to x; S is eventually in each neighborhood so each
x),C) is a directed set; for each N in N(x) let xy €

(x),C} converges to x so x € A.

L 7, 4pace the following are equivalent: (a) for any
{(b) the open neighborhoods of x form a base gor the

.9 the intersection of open neighborhoods is open. We
'y neighborhood N of x contains an open neighborhood.
But TN is closed so CCN is open. It contains x and
od; it is a subset of CCN = N. (b} implies (a): Let

of x contains an open neighborhood M; by 2.11, M inter-
point y in that intersection. Since M is open it con-

it intersects A. Thus x is in A, so A = A and is

D REMARKS.

ological space.

The conditions of THEOREM 2.12 are exactly
More often, a topological space is de-
of subsets of X such that an arbitrary union or finite
is again in t. One then defines a net as converging to
tually in each set of t which contains x. Once it is

ire exactly the open sets of the resulting 7, space, 2.12

valence will be complete.

X be a set and t a class of subsets.
class of open sets Ain the 7, 4pace X.

Under the con-

since it is a neighborhood of each of its points. If A
n A, there is a set of t which contains x and is con-

these sets for every x in A is equal to A and belongs

use the notation t for a topology arising from a con-
, and Ct for a convergence arising from a topology.

s of open sets, will denote a topological space.

REM 2.12 provides a reasonably useful set of necessary
that a space be topological. Kelly provides another
11 apply to a space which is merely *; the bulkiness
ated limit property) as well as the difficulty in de-

make it sufficient here to merely state the result,
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which will not be used in the sequel.

2.16. THEOREM. (Theorems 2.4 and 2.9, Kelley,
space is topological if and only Lif £t satisfies the
condition: Let D be a dinected set and E, @ dinected

(m,f) €D x [IE, define R(m,f) = (m,f ) where £ 4s 1hi

S(m,n) be defined fon n in E;,. Then whenever {S(m,n)

for all m in D and also {xy,m € D} converges 1o x, £t

&
J
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General Topology). An &
foLlowing Aterated Limit
Aet fon each m 4n D.
» mth coondinate of f. Let
n € E } converges 1o xp

goLlows that S+R(m,f) con-

Fon

vernges to x.
2.17. DISCUSSION AND EXAMPLE. Diagram 1 may be|of some help. If one
+ S(m,n) 1 L T
i T S(m+2,n +
-t T -+
+ S(m,n+2 T 1
- T A
+ T |
T T S(m+2,n#5) + ‘
+ T |
—p— 4 - 1 1 i ‘
I 4
4 . 1 T 4+
T T T L
T |Il|
Xm Xn+2 x

DIAGRAM 1

thinks of the points S(m,n) as being in a set A, the

in A are in A, and the point x is in A . The iterate
specific net in A converging to x, so it implies that
stronger, requiring in addition that a specific net ¢
eventually in a finite set converge to 0) is an £ sp
set is closed (the closure of the empty set is empty,
is X U {0}).
property cannot hold.

2.18. EXAMPLE.

It is not J} and thus not topological,

Convergence almost everywhere.

nstandard examples' spaces of functions from the real

points X

m as limits of nets

d limit property produces a

A=

K but is somewhat
EXAMPLE 2.4 (nets

ace and the closure of any

2

e

onverge.

and of any nonempty set X

so the iterated limit

We shall attempt to use as

s into the reals. Suppose
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we consider the class of 4
net of such functions cony
a set of measure zero (a f
outlined in an appendix).
as follows: fj converges g
A, fd is eventually in eac
N(x,e) =
On the other hand, the fol
thus not topological. Sup
x. There exists a sequend
to be published in the nex
i.e., there is a neighborh
thus find a subsequence wh
Now, by a theorem of which
sequence of this last sequ
fact that it remains outsi
is impossible to construct
We have thus found a
topological space; this wi

We omit here the somewhat

GENERAL TOPOLOGY IN LI

As noted in the intro

3.

theorems from a number of
develop ane topic to great
rems are stated for fairly
logical spaces are all rea
sion will follow the usage

3.1. DEFINITIONS. 1
gence C2 (i.e., fewer nets

Cl'

3.2. THEOREM. 14 C,
than (X,C)). 14 (X,t) and
vergence C, 45 ginern than

Suppose a set is open
of the set € - Since C,
the set which must therefo

(this theorem allows us to
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11 real-valued functions on [0,1] and specify that a

erges if and only if it converges pointwise except on

ew elements of measure theory as it is used here are
This is clearly a J space if the definition is stated

o f(a.e.)if and only if for some set of measure zero

h set of the form i

{f: |[£4(x) - £(x)]| < e} x €A, e > 0.

lowing argument will show that (X,a.e.) is not J& and

pose a neighborhood basis could be found for some point

e converging to x in measure (see 4.16 or the appendix,

t issue of this journal) which fails to converge a.e.;

ood U which the sequence is frequently outside. We may

ich remains outside U; it will still converge in measure.
a proof is outlined in the appendix, we may find a sub-

ence which does converge to x a.e., contradicting the

de the neighborhood. This contradiction shows that it
a neighborhood structure for (X, a.e.). .

space of some mathematical application which is not a
11 serve to justify some study of general limit spaces.

less direct proof that (X,a.e.) is not £*.

MIT SPACES.

duction, it has been decided to present a few elementary
topics of general topology, rather than to attempt to
depth or with weakest possible hypotheses. Most theo-
weak spaces, since the corresponding theorems for topo-
dily available. To a large extent the following discus-
of Bourbaki.

f the convergence C; on X is smaller than the conver-

converge) we call ¢, ginen than C, and C, coansern than

48 ginen than C,, the space (X,C,) has fewen open sets
(X,s) are topological and t L5 a subset of s, the con-
the convengence C,.

with respect to C,, and a net S converges to a point x
is a subset of C,, S converges C, and is eventually in
re must be open in (X,C;). Now let t be a subset of s

call t coansen, s g4inen) and suppose S converges to x




CONVERGENCE IN ABSTRACT SPACES

in (X,s). Then S is eventually in each set of s cont
ually be in each set of t containing x and converge i
3.3. REMARK. It is worth noting that if an arb

given, a class of open sets (denoted by t.) is determ
to define a convergence, denoted by C*. A net conver
each required open set and so converges C*, but if C
C* will be strictly coarser. In any case, C* will be
convergence coarser than C, since if C' is coarser th
open sets than (X,C) and thus no fewer convergent net

3.4. DEFINITIONS. Let f:(X,C) -~ (X',C') be am
spaces. f is continuous at x if whenever the net S ¢
converges to f(x). f is continuous on a set if it is
of the set. X and X' are homeomorphic if there is a

whose inverse is continuous; the mapping is a homeomo

3.5. THEOREM. Let X and X' be anbitrany Limit
Aimplies (c). 1§ X' 48 topological (X need not be) th

(a) f 45 continuous.

(b) for any subset A of X, £(A) < £(A).

(c) B C X' 44 open |(closed), £71(B) is open

(a) implies (b): Let x € A; i.e., anet S in A
a net in f(A) converging to f(x), so f(x) € %TKTZ (b
Let x € £-1(B), so £(x) € £(£1(B)) c £F1(B) cBC B
E:TEES c £ 1(B) and £ 1(B) is therefore closed. (c)

For any open

topological and S converges to x in X.
is an open set containing x. Thus S is eventually in
in N and converges to f(x). Since each image of a co
continuous. (It is clear that the open and closed se
by set complementation).

3.6. DEFINITIONS.

Cartesian product. The product convergence is the coa

Let Xi be a limit space for

Cartesian product X such that each of the projection
That is, a net in X converges if each of it

It should be noted

tinuous.
the image of the proposed limit.
space is not in general a product of nets in the Xj.
It will be useful occasionally to use rigorously
A is a subset of the limit space X, A may be regarded

ing as convergent those nets in A which converge to p

91

ining x, so it must event-
(X,t).

trary £ space (X,C) is

ned and this may be used

ent C is eventually in

s not topological itself

the finest topological

n C it will have fewer
than (X,C*).

pping between two limit

nverges to x, the net f-S

continuous at each point

-1 continuous onto mapping

phism.

paces; then (a) Amplies (b)
n (c) amplies (a).

closed).
onverges to x. Then f(S) is
implies (c): Let B be closed.

hence x € f }(B), so

mplies (a): Suppose X' is
eighborhood N of f(x), £ '(N)
£ 1(N), so f(S) is eventually
vergent net converges, f 1s

conditions are equivalent,

ach i in I, and gXi the
sest convergence on the
appings P;: X ~ X is con-
projections converges to

hat a net in the product
the notion of subspace. If

as a limit space by consider-

ints of A in the limit
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structure on X. It is cle
£, J&) will carry over to

in A need not be open or ¢

3.7. LEMMA. Let X b
some x 4An X' each constant
homeomonphic to X.

Let X(x) denote the s

coming from X) arbitrary and all other coordinates as in x.

the xth projection map, P/
we must show that the inve
their images under P~! by
of the net P"!+S is S, and

(since each constant net i
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ar that the various elementary restrictions on X (&, J,
A; it should be noted however that a set open or closed

losed in X.

e any factorn of a product Limit space X', such that for
net in {x} converges to x. Then X' has a subspace

et of points of X' which have one coordinate (the one
The restriction of
X: X(x) > X then is continuous and has a unique inverse;
rse is continuous. Let S converge to s on X and denote
P~l.5 and Pl(s).

any other projection is constant and thus convergent

It is clear that the Xth projection

n x converges, any projection of such a net does); hence

P~1.S converges and the ho

3.8. THEOREM. 14 a
then each facton 4is.

By the remark of 3.6,
ty; by 3.7 the factor is h

While in many cases T

uct space, a fairly genera

only two such theorems here.

3.9. THEOREM. A pro
We shall show that th

Xy

It is clear that if S conv
tually in Pk(HNi) = Ny, i.
larly, if Py S converges t

P.-
J

Letting all other Nj =

verge to x in terms of the

S eventually in Nj’ cee

The above neighborhoo
filter given in 1.2; the n

of the neighborhood filter

3.10. THEOREM.

Ap

in Xj, with all but finj

eomorphism is established.

noduct space is nonempty and £ (7, £, J,» topological

any subspace of the product retains the desired proper-
meomorphic to a subspace and the property carries to it.
strictions on factors carry over to restrict the prod-

1 proof like that above seems difficult. We shall prove

et of 7, dpaces S I,
collection of all I; such that N; is a neighborhood of

tely many Ny = Xg, is a neighborhood basis for x = Ix;.
rges to x in this neighborhood system, Py ‘S is even-

-» Py+S converges to x, in the limit space Xy . Simi-
Xy in X, for each k, P 'S is eventually in each Ny,
and for K a finite set EPk-S is eventually in ENk'
IP,-S and hence S are eventually in each TNy and con-
neighborhood system.

system may be compared with the definition of product
ighborhood filter in the product space is the product

in the factors.

duct of topological spaces s topological.

By 3.9 the space is J, and we have a neighborhood basis at each point. Let V

be an arbitrary neighborho

d of x; by 2.12, it will suffice to show that V contains
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an open neighborhood of x. V contains a basis neighbérhood v, where each Vj is

a nefghborhood of x; in Xj (and all but finitely many!V; = Xz). For each Vi let

U; be an open subneighborhood, equal to Xj when V; is, It is then clear that TU;
is a neighborhood of each of its points, hence open, is a neighborhood of x, and

is contained in NV; and thus in V. This completes the proof.

We remark again that the carrying over to products of conditions such as £,
J, and the requirement that closures of sets be closed is non-trivial and is omit-
ted primarily due to space limitations.

3.11. DEFINITIONS. Separation axioms lend themselves especially well to
treatment in terms of convergence. We may define a space to be T1 (not to be con-
fused with J&) if no net which is eventually in {x} converges to any point y # X.
A space is T2 or Hausdorff if and only if no net has two limit points. Note that
a T, &£ space is automatically T,. It is also clear (Py examining various projec-
tions of a hypothetical doubly convergent net) that a/ product of T, limit spaces

is T,; the converse requires the factors to be iispac#s.

3.12. THEOREM. A 7, space is T, if and only ifl each two points have dis-
joint nedighborhoods.

If x and y have disjoint neighborhoods, a net S cannot eventually be in both
of those neighborhoods. If on the other hand every nbighborhood V of x and every
neighborhood U of y intersect, define for each (V,U) b point g(V,U) in V N U.
Then the net {g(V,U),N(x)xN(y),< €} converges to both x and y and the space is
not Tz’ 1

3.13. THEOREM. Let f,g be two continuous mappings from any £imit space
(X,C) 4nto a T, Limit space (Y,D). Then A = {x:f(x) = g(x)} L8 closed 4n X.

Suppose some net S in A converges to a point y(C). By continuity f<S con-
verges to f(y) (D), g+*S converges to g(y) (D). But as nets (since S is in A) f-S
and g-S are identical and have at most one limit point f(y) = g(y), and y 1is in
A so A is closed. ,

3.14. DEFINITION. (X,C) is compact if and only if each universal net con-
verges. Since each net has a universal subnet, we might wish merely to require
that each net have a convergent subnet. This condition does not however in gen-
eral imply compactness, since a universal net may have a proper subnet (which is

then also universal and in fact has the same associated filter).

3.15. THEOREM. Let X be a J space. Then X 44 |compact 4if and onby 4if each
net has a convengent subneft.

Sufficiency of compactness was noted above for any limit space. Conversely,
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choose a universal net; it has a convergent subnet. The universal net is eventu-
ally in each set the subnet is in, so it is eventually in each necessary pseudo-

neighborhood and converges.

3.16. THEOREM. Let X be any compact £Limit space. Then any open covering
04 X has a ginite subcovering.

Let A be an open covering, and suppose that for any finite subset of A (con-
sisting of sets A, B, C, ++*, K) we can find a point x(A, B, C, ---, K) which is
outside all of them. Then x is a net whose domain is the set of finite subsets
of A, ordered by < ; it has a subnet converging to a point z. But then no set of
A can contain z since if oﬁe did the net would stay eventually outside that open
set about z and fail to converge to z. This contradicts the supposition that no

finite subcovering exists.

3.17. THEOREM. Let X be a topological space in which each open covering
has a ginite subcovering. Then X L8 compact.

Let S be a net with no convergent subnet, and for each d in the domain D of
S let Dy = {e: e > d}. Let A4 = CgfﬁET; an open set. The intersection of finite-
ly many Dy contains another, no finite collection of sets A; covers X; hence no
collection does. Let y be outside of every Ad, i.e., in each S(Dy); hence each
neighborhood of y intersects each S(Dd), and a subnet of S may be found convergent

to y. Then by 3.15 X is compact.

3.18. THEOREM. (Tychonoff) Any product of compact Limit spaces is compact.

Consider a universal net in the product space; any projection is universal
and thus converges, so the pfiginal net converges.

This is so general due to the choice of definition in 3.14. Had the conver-
gent subnet definition been chosen, the proof of 3.15 would be essential to the

above manner of proof, which would then apply only to J spaces.

3.19. THEOREM. A space finer than a Hausdorgf space is Hausdonff. A space
coansen than a compact space L4 compack.

Immediate from the definitions; a coarser space has more convergent nets.

3.20. DEFINITIONS AND REMARKS. One type of question apparently quite um-
suited to study in terms of nets is countability. In the ordinary definition, a
topological space is gt countabfe if there is a countable basis for the neigh-
borhood filter at each point; we retain this definition for'Ja spaces, and it
might even be salvageable in J spaces. On the other hand, it is sometimes useful
to consider conditions relating to sequences. We shall call a space X sequential

if whenever a point x is in the closure of a set A, there is a sequence in A
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converging to x. (One may study spaces in which the 6n1y items of concern are
sequences; but if the space is not by nature first coﬁntable much machinery will
not apply since sequences have subnets which are not éequences).

We omit entirely here discussion of second countable spaces (spaces with a

countable collection of open sets generating the topology).

3.21. THEOREM. Let X be a $inst countable J space. Then X is sequential.
Suppose a net in A converges to x; thus A intersects each set in some pseudo-
neighborhood system for x, and since that system has a countable base the construc-

tion of a net in A converging to x (2.11) will yield ﬁ sequence.
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