SIAM . CompuT.

@ 1989 Society for Industrial and Applied Mathematics
Vol 1& No. 1, Pp. 152-165, February 19wy

o1

MINIMAL THRESHOLD SEPARATORS AND MEMORY
REQUIREMENTS FOR SYNCHRONIZATION*

EDWARD T. ORDMAN+

graph. A new expression is given for this separator 1 of a threshold graphin terms of the normal decomposition
of the threshold graph given by Zalcstein and Henderson. It is shown that 1+ 1 values would be needed in

the shared variable even if the mutual exclusion were being managed by the Fischer-Lynch test-and-set
operator, which is considerably less restrictive than PV-chunk.

Key words. mutual exclusion, threshold graphs, synchronization primitives, test-and-set, PV-chunk

AMS(MOS) subject classifications, primary 68Q10; secondary 68R10, 05C70

V operations [6], PV-chunk operations [9], and test-and-set operations [2], [14]. In
this paper we will implicitly be using the model of critical sections and of test-and-set

Philosophers problem (see[10] and some earlier references cited therein); a very practical
problem of this type is the readers-and-writers problem (see [17] and the references
therein) in which several processes may be allowed to read a data item simultaneously,
but a process may change the item (write it) only at a time when no other process is

* Received by the editors January 30, 1985, accepted for publication (in revised form) April 12, 1988.
This work was partially supported by National Science Foundation grant DCR-8503922.
7 Department of Mathematical Sciences, Memphis State University, Memphis, Tennessce 38152,

152

‘—“._

M1

accessing it. A set ¢
taneously, is sometj
of such problems is
the hope that the so
philosophers proble
requirements for mu
ance, etc.) for a lim
and writers problem
are as powerful as te
efficient in some oth
Some generalize
graphs. Suppose eac
adjacent (connected t
be executing their cr-
graph without self-]c
generalized dining pi
dining philosophers !
of which requires tw
available. Clearly any
proceed, so the corres
can never acquire enc
hypergraph would be
this analogy see [91,
processes represented
background is given i:

2. Graph theory -
vertices V together wi:
pair of distinct vertice:
edges. If @ and b are
(b, a)) is an edge of C

Threshold graphs
[11], [13], [15], [16]; w
graph if there is an in
with each vertex x in
subset S of N is stable
if the sum of the a(s)
labeling, including kne
izations of threshold e
we need are recalled aj

A graph is a thresh
however, is not uniqu:
minimal separator r (ar
graph. In § 4 we use a
(implied in Corollary 1
more closed form for t:
is important in determ:
exclusion.

In§ 5 westudyam
philosophers problem t

i

for Industrial and Applied Mathematics
010

) MEMORY
TION*

25, certain pairs of processes
asly). This situation is modeled
v excluding pair is represented
threshold graph, then mutual
chunk operations on a single
-hold separator number of the
is of the normal decomposition
-1 values would be needed in
1e Fischer-Lynch test-and-set

es, test-and-set, PV-chunk
-C70

hronous processes pre-
[4]-[6], [9], [11], [14].
wurces, such as a printer
‘ning simultaneously in
section of code in each
'Xecute a joint algorithm
s typically represented
ch is a section of code
n (and in which it may
yrocesses); and the exit
section and makes the
re precise discussion.
nessages or by manipu-
1ys of accessing shared
2 operations [5], P and
perations [2], [14]. In
ons and of test-and-set
al motivations for this
ind-set operations in a

I exclusion problem in
me. In fact, there are
v a critical section at a
2is called the dining
ierein); a very practical
7] and the references
ditem simultaneously,
<n no other process is

vised form) April 12, 1988,
-NS03922,
‘his, ‘Tennessee 38182,

MEMORY REQUIREMENTS FOR SYNCHRONIZATION 153

accessing it. A set of processes, some of which may not enter critical sections simul-
taneously, is sometimes called a generalized dining philosophers problem: one study
of such problems is given in [12]. A second principal motivation for this paper was
the hope that the sort of analysis done in [2] could be extended to generalized dining
philosophers problems. Only a small start is made on that here: we discuss memory
requirements for mutual exclusion (although not lockout prevention, starvation avoid-
ance, etc.) for a limited class of problems, which do include some forms of readers
and writers problems. We find that, for this very limited goal, PV-chunk operations
are as powerful as test-and-set operations, although they appear not to be as memory-
efficient in some other cases.

Some generalized dining philosophers problems correspond in a natural wayv 1o
graphs. Suppose each vertex of a graph represents a process, and two vertices ure -
adjacent (connected by an edge) if and only if the two corresponding processes cannot
be executing their critical sections simultaneously. In this way each finite undirected
graph without self-loops (we describe this more formally below) corresponds to a
generalized dining philosophers problem. On the other hand, not every generalized
dining philosophers problem corresponds to a graph. Consider four processes, cach
of which requires two tape drives, in an environment where four tape drives are
available. Clearly any two processes can (if all goes well) obtain two drives each and
proceed, so the corresponding “‘graph” would have no edges. However, three processes
can never acquire enough tape drives (and enter their critical sections) at once. o .
hypergraph would be required to model this situation. For some further discussion ot
this analogy see [9], [13]. We will be considering mutual exclusion in systems of
processes represented by a certain class of graphs, the threshold graphs. Graph theory
background is given in the next section.

2. Graph theory preliminaries. By a graph G=(V, E) we mean a finite set of
vertices V together with a finite set of edges E, each of which is a different unordered
pair of distinct vertices: that is, a finite undirected graph without self-loops or parallei
edges. If a and b are vertices we say that they are adjacent if (a, b) (or equivalently
(b, a)) is an edge of G; we also say that this edge connects a and b.

Threshold graphs were introduced in [3] and have been studied extensively 9],
[11],[13],[15], [16]; we will rely very heavily on [9]). A graph G =(V, E) is a threshold
graph if there is an integer ¢ called the threshold (or sometimes the separator), and
with each vertex x in V is associated a nonnegative integer label a(x) such that a
subset S of N is stable (no two nodes in it are connected by an edge in E) if and only
if the sum of the a(s) for all s in S is less than or equal to . (We will call such 4
labeling, including knowing 1, a threshold labeling). A great many other character-
izations of threshold graphs are known (see, for example, [3], [9], [13]); some that
we need are recalled at the start of § 4. '

A graph is a threshold graph if and only if it has a threshold labeling. The labeling,
however, is not unique. In [16] Orlin has given an algorithm for determining the
minimal separator (and an associated labeling) that will work for a given threshold
graph. In § 4 we use a slight modification of the normal form for a threshold graph
(implied in Corollary 1B, [3, p. 151] described in detail and named in [9]) to give a
more closed form for the minimal value of 1, and to see that this minimal value of ¢
is important in determining the minimum amount of shared memory to do mutual
exclusion. ;

In § 5 we study a mutual exclusion problem (Example 5.2) for a generalized dining
philosophers problem that corresponds, in the sense described in § 1, to a threshold

‘-—“—_

EDWARD T. ORDMAN

g

been discussed in [9]. We find that the minimal separator 1 is a measure of the amount
of memory needed to enforce Mmutual exclusion (without lockout prevention) in a
System of processes represented by a threshold graph, using PV-chunk operations; we
further see that at Jeast this much memory is required, even if test-and-s
are used instead. We see that test-and-set is, in cases other than thresho

demanding of memory than PV-chunk. We also look at a simple ¢
concurrent accesses of data bases.

By way of making these terms clearer, we restate a well-known fact [3] about
hold graphs: no threshold graph may have as an induced subgraph any of the
graphs shown in Fig. 1. These are the path on four vertices, P,: the cycle on four

vertices, C,; and the union of two disjoint edges, 2K, (note that a single edge is a
clique on two points, K,).

C, P, 2K,
FIG. 1. Graphs Cy, Py, and 2K,.

graph G, suppose that one of them is and label the four vertices W, X, y, and z. Suppose
also that (w, z) and (x,y) are edges, but that {w,y) and (x, z) are not (e.g., label the
vertices in each graph in Fig. 1 clockwise from upper left.) We will consider the
labelings from a threshold labeling of G. Clearly, a(w)+a(z)>t and a(x)+a(y)> 1,
since these pairs of vertices induce edges; clearly, a(w)+a(y)=tand a(x)+a(z)=1,

since these pairs do not. Adding the two pairs of inequalities produces a contradiction,

the same separator 1.

Given a set of vertices V there may be various labelings a(x) of the vertices and
various separators 1 associated with them that lead to the same threshold graph G.

A

problem slightly d
paper. To this enc
form™ of a threshc

LEMMA 3.1. ¢

X be a vertex with .
of G.

Proof. Let z b
a(z)+a(_v)> 1. But

In [3] thresho!

I cannot occur as i

THEOREM 3.2.

(a) Gis a thr

(b) Everv indu

tc) G does noi

Proof. ltems (a
(b) by Lemma 3.1,
Item (b) implies (c,

The fact that (i
the following Corol
partition of V into .
no two vertices in ,
then N(a,)c N(a,)
further here.

Given a threshe
isolated vertices and
in class C,. The sut
each consecutive sul
vertices in Cy.,. Coi

Note the follow

(a) Novertexin

(b) Every verte:
k= j).

{c) Every vertex
vertices.

We may need to
are nonempty and th
two cases. If C,,, is .
if there were only o
construction would h
C,+) must contain at
D, . In this case we aj
empty), and increase
proceed with further

It is easy to see t
removal there are do;
some vertices isolate:
would have been alre

We call the result
the normal form of G
we combined the two ¢

nk operations has already
4 measure of the amount
lockout prevention) in a
PV-chunk operations; we
if test-and-set operations
an threshold graphs, less
a simple application to

iew some graph theory
1€ subgraph of G induced
hose edges are al] edges
2FY two points in it are
t clique considered as a
-ontained in any larger
s denoted K,.
tto it. We call a vertex
call a vertex dominating
lisolated vertex. By the
adjacent to x, together

l-known fact [3] about
d subgraph any of the

Py; the cycle on four
that a single edge is a

eraph of a threshold
S Xy and z, Suppose
re not {e.g., label the
Ve will consider the
“and a(x)+a(y)> !,
" and a(x)+a(z)§t,
uces a contradiction.
- must be a threshold
“vertices and retains

' of the vertices and
threshold graph G.
is has been done in
T we approach the

paper. To this end, we need to recall and modify slightly the definition of “normal
form™ of a threshold graph given in [9).

LEMMA 3.1, Ler G pe a threshold graph with an associated threshold labeling. [¢
x be a vertex with q label as large as any other label in G. Then x is a dominating pertex
of G.

Proof. Let z be any nonisolated node. Then it is connected to some node y and
a(z)+a(y)> t. But a(x)éa(y), so a(z)+a(x)> and - is adjacent to x. 3

(a) Gisa threshold graph.

(b) Every induced subgraph of G (including G itself') has q dominating node.

(c) G does not have as an induced subgraph the graphs P,, 2K, or C,.

Proof. Ttems (a) and (c) have been proved to be equivalent in [3]. Item (a) implies
(b) by Lemma 3.1, since every induced subgraph of a threshold graph is threshold.
Item (b) implies (c), since none of Py, 2K,, or C, has a dominating vertex. [

The fact that (b) implies (a) is already implicit in [3]. That paper also contains
the following Corollary 1B. A graph G=(V, E) is threshold if and only if there is a
partition of V into disjoint sets A, B, and an ordering q,, @20+, a; of A such that

each consecutive subgraph G, place the isolated vertices in D, and the dominating
vertices in Cy+1. Continue until G, ., is empty.

Note the following:

(a) Novertexin any Dy is connected to any other vertex of any D, (including k =j).

(b) Every vertex of every Cy is connected to every vertex of every C; (including -

k = j).

(c) Every vertex of Dy is connected to every vertex of G forj =k, but to no other
vertices.

We may need to rearrange the last sets slightly to guarantee that both C, and D
are nonempty and that both C,+, and D,,, are empty. We distinguish, temporarily,
two cases. If Coy is empty, D, is nonempty (in fact it has at least two vertices, since
if there were only one it would have been in C.) and C, is nonempty (else the
construction would have stopped sooner). In the second case, Chiy is nonempty. Then
C.+1 must contain at least two vertices; otherwise the one vertex would have been in

. D,. In this case we arbitrarily choose one vertex of C,,\, move it to D,., (previously

empty), and increase n by one. Thus we also have C, and D, both nonempty, and
proceed with further analysis.

It is easy to see that all C, and D, are nonempty for = k=< n, since before each
removal there are dominau‘hg vertices by Theorem 3.2 and their removal must leave
some vertices isolated or else each dominating vertex of the newly reduced graph
would have been already dominating prior to the reduction,

We call the resulting decomposition of ¢; into (D,, D,---,D,, CiCy, o e, C,)
the normal form of G. It is unique except perhaps for the choice of one node when
we combined the two cases above; we tolerate thar since it simplifies calculations below.

..

156

EDWARD T ORDMAN

In Fig. 2 we illustrate the normal form, and the labeling that wij be introduced
below. On the left we show the graph G; the right shows the Same graph with the
vertex in C, labeled 11, that in C, labeled 8, those in D, labeled 1, and those in D,

labeled 4. For this graph and labeling, r=11. T, convince ourselves that lower labels

will not work, note that (once r, s, and y are labeled 1 and the separator is 1) vertex

X must have Iabe] at most t -3 sipce X, I, 8, u induce no edges; now x and w induce
an edge so w and similarly z mus; have labe] at least 4. Since r. s 4,2, and w indyce

r+1=ﬂ(dk+1), k=1 n
Proof. Qur labeling method 1s the same as that of [9] and [16]. For simplicity of
formulas we define g, = Md+1)- 1, where the product is forj=1,... > I; by definition

8 =0. Assign each element of D, the labe] ¢ (they lie on no edges). Assign each
element of D, the label I; the total of ajj the labels assigned so far is d,, which is
€qual to g,. Assign each element of D; the labe] d\+1; the tota] of the labels in D, is
d>(d,+1) and the grand total so faris g,. we show by induction that w

hen we assign
each element of Dy the labe] & -1+ 1, the labels in D, will tota] di(gi_,+1) and the

sum of the labels to this point will pe & The induction step is to observe that
8k +dk+l(gk + 1)=gk+,, that is,

H(d,-+1)—1+dh,md,+1) G=1,-+ k)
:(dl\+]+l)fl(d/+1)‘l (j:],-..’k)
=H(d/+1)~1, (j:l’...’k+1)

as desired.

Now we let 1 = &8, and for each k we assign each element of C the label 8n—8k_,.
We must show that this gives a threhold labeling of G. Note the f.

w z
1 1

Graph G

(¢) To test
towal (g, _,+1)+

This comple

It can be sh,
on the proof ther
of minimality wij|

4. Process sy
processes. We ar,
reader is referred
we have a numbc
demand access to
processes wanting
that each vertex ot
precisely if there j.

For €xample,
(the key) and an
wanting to locate ¢

Process A: Read t;

further
Processes B ang C
Process D: Change
Process E: Change

This is a sligh
Processes A, B, and
produce consistent |
not with B or C, P
Drawing a graph wit
the graph of Fig. 3(a
as shown in Fig. 3(b

E

Fi

Suppose we are I3
these processes such ti
members of each pair
and defined carefully i
W€ must provide entn
execution of these prc
never be in their cri.
Corresponding to each

at will be introduced
same graph with the
xd 1, and those in D,
:lves that lower labels
separator is t) vertex
now X and w induce
, S, u, z, and w induce
+ delete vertex w from

«D:n CI;C’v"',Cn)

en the vertices can be
'8

16]. For simplicity of
I, -, i;bydefinition
edges). Assign each
aris d,, which is

v ¢ labels in D, is
1at when we assign

| di(gi-,+1) and the
‘p is to observe that

k)
k)
k+1)

Cy the label g, — g, _,.
> following:
¢ labels in all the D,

ich point has label at
{d,+1)~1 and d, is

: threshold labelling

w Zz

MEMORY REQUIREMENTS FOR SYNCHRONIZATION 157

(c) To test if a vertex in D, is connected to a vertex in C,, note that their labels
total (g,_,+1)+(g, —g;-i). This exceeds ¢ exactly if k exceeds j, as required.

This completes the proof of Theorem 2.3. 0

It can be shown that this is the same labeling as that in [16]. We could then rely
on the proof there that the resulting 7 is minimal. However, a distinctly different proof
of minimality will follow from the results of § 4 below.

4. Process synchronization. Now we turn to the problem of managing asychronous
processes. We are motivated primarily by the considerations in [9] and in [2]; the
reader is referred to [2] for a more complete background and terminology. Suppose
we have a number of processes, some of which conflict with each other (e.g., they
demand access to the same resources that cannot be shared simultaneously by all
processes wanting them). We connect this to the considerations above by supposing
that each vertex of the graph G represents a process, and that two processes conflict
precisely if there is an edge connecting those vertices.

For example, suppose there is a record in a file consisting of two fields, a name
(the key) and an address. Suppose there are five transactions in the system, each
wanting to locate the same record, and then carry out the following tasks:

Process A: Read the name (that is, locate the record and confirm that it exists, no
further use of it).

Processes B and C: Read the address.

Process D: Change the address in the existing record.

Process E: Change the name (key) and address.

This is a slight generalization of a conventional readers-and-writers problem.
Processes A, B, and C are “readers” and all can access the record at once and still
produce consistent results. Process D can proceed simultaneously with Process A but
not with B or C; Process E cannot proceed at the same time as any of the others.
Drawing a graph with vertices A through E and drawing the appropriate edges yields
the graph of Fig. 3(a); this graph is, in fact, a threshold graph, with a threshold labeling
as shown in Fig. 3(b). This example is further expanded in § 5.

E D

A B ¢
1 2 2
Fia. 3(a) Fic. 3(b)

Suppose we are given a system of asynchronous processes and a set of pairs of
these processes such that two processes in a pair cannot proceed simultaneously; ie.,
members of each pair mutually exclude each other in the sense discussed in § 1 above
and defined carefully in [2]. Each process has a piece of code called a ““critical section™;
we must provide entry and exit protocols for all processes in the system such that
execution of these protocols will guarantee that two processes in a given pair will
never be in their critical sections simultaneously. The graph. G, with one vertex
corresponding to each process and one edge for each mutually excluded pair of

e e

158 EDWARD T. ORDMAN

processes, will be called the exclusion graph of the system. (For other work with this
graph, see [15].)

Our treatment is much weaker than that in [2] in that we do not consider lockout
prevention or any sort of fairness condition (e.g., bounded waiting). However, the

treatment in [2] assumes that only one process out of the N processes in the system

can be in its critical section at once: that is, the exclusion graph is a clique. Here we
deal with an exclusion graph that is a threshold graph, and any set of processes
corresponding to a stable set of vertices in the graph can be in their critical sections
at the same time. '

For communication between the processes, we will assume that there are one or
more shared variables V,, - - - Vi, each of which can be accessed by more than one
process, perhaps by all the processes. One thing we are seeking is bounds on the
storage necessary for these variables. We denote the size of the set of values assumable
by Vi by |Vil; thus if V, can assume values from 0 to N, |V, [=N+1.

The processes access these shared variables only by specified operations called
synchronization primitives (see [1], (2], [51,[6], [9], [11], [14] for some guides to this
rather extensive literature). In this paper we will have occasion to use two distinct
synchronization primitives: PV-chunk [9] and test-and-set [2], [14].

The syntax of the test-and-set operator, given in more detail in [2], may be
summarized as follows: a test-and-set operator allows a process to test a shared variable
until it reaches a fixed (set of) values and then perform certain actions, including
resetting the shared variable to a value, which may be determined by the process using
its knowledge of the shared variable value. The statement may be written as follows:

test Vuntil V=x, or x,or---or X,
then V:=function (V).

If V is not one of the indicated values then the statement is reexecuted from the
beginning (busy waiting). As soon as V assumes one of the indicated values, func-
tion (V) is computed, V is set to the new value, and control passes to the next statement.
(The computation and substitution is an atomic action; that is, if several processes are
attempting to access V, only one at a time will actually change the value of V.) Note
that V= function (V) is an acceptable form of the test-and-set statement, since by
implication it tests V first and sees that it has any one of its finitely many possible
values. In each case, the function in function (V)isan arbitrary programmable function;
it may take significant computation time or space. It is this feature that makes the
general test-and-set operator both extremely powerful and difficult to implement
efficiently.

A PV-chunk operator [9] can be implemented as a special case of a test-and-set
operator but, being much more restricted, is usually written rather differently. Essen-
tially, it restricts the test to testing for a certain one-sided inequality and the function
to incrementing or decrementing by a (freely user-chosen) constant. The syntax we
will use is the following:

Test V until V=¢, then V= V-c¢,.

Note that ¢, can vary from one occurrence of this statement to another. V is
initialized to some positive integer at the start and will never become negative; it can
be increased by any process by executing the statement with ¢, negative, in which case
the test condition is met automatically.

Variations of both test-and-set and PV-chunk can be specified in which a “failure"
message is returned if the condition is not met, instead of busy waiting until it is met.

An operatic
in UNIX System
several variables
does not carry tt
for finding meth
PV-chunk whict
hardware exper;
computer, have
changes on a var
log N). The oper
but are surely les
individual proce:
value to shared
serving the share:
very little back t
sleeps until V is |
alternative model
the caller by the .

A principal r.
a threshold grap!
PV-chunk operat;
enter its critical s
label of its node -
for which PV-ch
avoidance.

The results i
impose a technica
state of the syster
process enters or |
value, it makes th
proof of Theorem

Our main res
where the exclus:
operations requirc
mined by Theorei

THEOREM 4.1
which is a threshoi
achieve the desire:
shared variable wi;

Proof [9]. 1t
protocol for a pro«

Test V until

and the exit proto

(as noted, the pret
a collection of pre
if their corresponc
no edges between

or other work with this

lo not consider lockout
vaiting). However, the
yrocesses in the system
sh is a clique. Here we
1 any set of processes
n their critical sections

e that there are one or
ssed by more than one
king is bounds on the
set of values assumable
=N+1.
ified operations called
for some guides to this
on to use two distinct
“14).
~lin [2], may be
st a shared variable
ain actions, including
'd by the process using
be written as follows:

s reexecuted from the
dicated values, func-
stothe next statement.
I'several processes are
the value of V) Note
't statement, since by
initely many possible
dgrammable function;
ature that makes the
ifficult to implement

case of a test-and-set
rer ditferently. Essen-
ity and the function
stant. The syntax we

ent to another. V is
‘ome negative; it can
‘gative, in which case

in which a ““fajlure™
aiting until it is met.

MEMORY REQUIREMENTS FOR SYNCHRONIZATION 159

An operation very much like PV-chunk is available as a system call “SEMOP”
-in UNIX System V. The operation there increments or decrements a variable (or even
several variables) by varying amounts as an atomic operation, provided that the change
does not carry the variable(s) below 0 or above 2'5 — 1. Thus, there is real motivation
for finding methods that coordinate large time-shared or networked systems using
PV-chunk which require a limited range for the shared variable(s). In addition,
hardware experimenters, such as those designing the New York University Ultra-
computer, have been experimenting with parallel hardware designed to perform N
changes on a variable in less than time proportional to N (e.g., time proportional to
log N). The operations proposed seem not inconsistent in complexity with PV-chunk,
but are surely less complex than the general test-and-set. Test-and-set requires that an
individual process receive a value from the shared memory, compute, and return a
value to shared memory; PV-chunk allows a value to be sent to special hardware
serving the shared memory, which can do the calculation internally and needs to pass
very little back to the calling process (in the model given here, the calling process
sleeps until V is large enough, then V is decremented and the process awakens; in an
alternative model, a single-bit message “fails” or “succeeds” and may be returned to
the caller by the special hardware.

A principal result of [9] is that given a collection of processes and conflicts forming
a threshold graph, conflict avoidance (mutual exclusion) can be achieved by using
PV-chunk operations on a single shared variable with range O to t; each process can
enter its critical section if and only if it can decrement V by an amount given by the
label of its node in the graph. Further, the threshold graphs are precisely the graphs
for which PV-chunk operations on a single shared variable will achieve conflict
avoidance.

The results in [2] assume that all processes in the system are deterministic and
impose a technical requirement *“No Memory™: each process knows nothing about the
state of the system other than what is in the shared variable(s). That is, each time a
process enters or leaves its critical section when the shared variable(s) have a particular
value, it makes the same change in the shared variable(s). We do require this in the
proof of Theorem 4.2 below.

Our main result in this section is that managing mutual exclusion in a system
where the exclusion graph is a threshold graph, both test-and-set and PV-chunk
operations require the same amount of shared memory and that is the amount deter-
mined by Theorem 3.3.

THEOREM 4.1 [9]. Let a system of processes have the exclusion graph G=(V, E),
which is a threshold graph with separator 1. Then there are entry and exit protocols that
achieve the desired mutual exclusion by using PV-chunk operations 1o access a single
shared variable whose range includes the integers 0 1o 1.

Proof [9]. It suffices to start the shared variable V with the valye 1. The entry
protocol for a process whose corresponding vertex has label a is simply the following:

Test V until V=a then

Vi=V-q
and the exit protocol is simply

Vi=V+qa
(as noted, the prefix “Test V until VZ-a" would add nothing). It is easy to see that
a collection of processes can be in their critical sections at the same time if and only

if their corresponding vertex labels total no more than 1, i.e., if and only if there are
no edges between their corresponding vertices. 0

EDWARD T, ORDMAN

shared variables Lo, Vi with [V]|= Y, then the numper of different sets of values
assumable by rhe Vi (and hence the product of the ;) must be gt least 1 +1,

Proof. Suppose our synchronizing method stores adequate information in Vi
through Vi so that a process can determine from them if jt €an enter its critica] section,
and suppose the setof V; assume no more than ¢ vajyes, We will obtain 3 contradiction.

Put G in normal form as ip § 3, 50 that

tH1=]] (d, +1), (k=1,--.).

We will select t+1 distinct collections R, of vertices from the union of the
D,k=1,... ,» 1, and arrange them in order such that we have the following:

(a) Any two R, and R, differ, but their intersections with each Dy, have one
containing or equal to the other.

(b) R, and R,., differ by only one vertex,
We do this by a process suggestive of Gray codes for numbers of mixed base. First,
order each D,. For each sequence of integers (a),a,,--. » @y) With 0 < A =d;, select
a set consisting of the first a, elements of Dy for each k. This yields Il (d, + D=1+1
Sets meeting the conditions of (a). We must now order them tg obey condition (b).
We do this by starting with the se¢ determined by (0, - - . ,0), then going to (1, 0,---,0),
(2,0,--. ,0), -0 (d,,0,--. ,0). On “filling” each position change the next position
by one and then step “down” through the previous caseg: (d,,1,. .. »0), (d,—
1,1,0,---,O),-~-,(1,1,0,---,O), (0,1,0,---,0), and then (0,2,0,---,0) and so
on. The resulting list includes all t+1sets and consecutive sets differ in just one element.

first element of D, can enter it Critical section; let it do $0. Now go through
the S€équence of starts and stops (entries and exits of critical sections) dictated by the
S€quence R, above: €ach element of D, starts (enters ijtg critical section), the first
element of D, starts, each element of D, stops (exits its critical section), and so on.
Each step involves one element of 4 D, entering or exiting its critjcaj section. At each
stage some change may be made in one Or more of the Vi. There are t+1 stages
(starting with N0 processes in critica] sections and going through all the R,). By
hypothesis, the collection of V, can assume only distinct values, so there are two
stages, R, and R,, of the above process when the Vi are in identical states, We must
now get from this to a contradiction,

Suppose the set R, of processes in critical sections js represented by the n-tuple
(aj,---, @,) and the set R, by(b,, ... » b,). These must differ; without loss ofgenerah'ty
Suppose b, <a; and b =a; for i>j. Now, one at a time, stop each process (if any)

the set R, (wher
€annot do so wit
and no procesg I
of Theorem 4.2,
Since this sh
using the test-anc
the more restrictiy
We also obtain Cc
CoroLLary .
allowing G 4, be
Proof. If the
Theorem 4.1, mut,
distinct values,
This is the min
also obtain a proof
CoroLLary 4,
which are threshold_
of G). Let G have s,
Proof. The syst
exclusion enforced |
entry protocol, atter
of its associated lab,
and deadlock-prone.
in a Gy; hence the s
tendency o deadloci
a single atomic actio.
We have now se«
sufficient measure of
PV-chunk and for tes
In the specjaj ca:
with (after adjustme
and a shared variabic
Theorems 3.1 and 4.4

5. Some examples
threshold graph, PV.ct
conflicts. In Example
graph, test-and-set may

Example 5.1 We .
D (Fig. 4), such that ea
n=4 of the famous di
avoid conflict using test

s replaced by test-and-set,
sult of this section is that
if we use several shared

18raph G = (V, E), which
Mection of entry and exit
and-set on a collection of
of different sets of values
at least t+1,
juate information in Vi
tenter its critical section,
Il obtain a contradiction.

rom the union of the
€ the following:
vith each D, have one

rs of mixed base, First,
with 0=gq, = d,, select
vields [| (dy +1) = 1+1
to obey condition (b).
1goingto (1,0, . - ,0),
'ange the next position
Sy, . 0), (d,-
{0,2,0, - *+,0) and so
terin just one element.
I"sections, Clearly, the
so. Now go through
stions) dictated by the
ical section), the first
! section), and so on.
‘itical section. At each
There are 1+ stages
Jugh all the R,). By
ues, so there are two
tical states, We must

ented by the n-tuple
out loss of generality
‘ach process (if any)
4.1 through a,. Note
e its critical section,
ents of D, one at a
this b, times so that
her has one or more
at now we have oyr
with the remnant of

MEMORY REQUIREMENTS FOR SYNCHRONIZATION 161

the set R, (where now no process in D, or any later D, js in its critical section) but
cannot do so with the remnant of R,, despite the fact that the V, values are identical

and no process in Ci can tell one situation from the other. This completes the proof
of Theorem 4.2. o

using the test-and-set operation, it follows that at least 1+ 1 vajues are needed using
the more restrictjve operation PV-chunk. From the fact that [T(d+1) values are needed
we also obtain Corollary 4.3

CoRroLLArY 4.3, The value of t found in Theorem 3.3 is the smallest valye of t
allowing G to be labeled as q threshold graph

COROLLARY 4.4, [¢r G be a threshold graph and let G, G,y -, G, be subgraphs,
which are threshold graphs and whose union covers G (i.e., includes all vertices and edges
of G). Let G have Separator t and let each Gy have separaror W Then [] (t,+1)= ¢+ 1.

Proof. The System of processes whose exclusion graph is G can have mutual
exclusion enforced by enforcing it within each subgraph Gi. Each process will, in its
éntry protocol, attempt to decrement shared variables Vi through V. by the amount
of its associated labe] in the respective Gi.. While this approach is definitely lockout-
and deadlock-prone, it does enforce the needed exclusions since every edge of G is

a single atomic action, as is the case in the UNIX System Vv implementation.)

We have now seen that for threshold graphs, [[(d, + 1) = ¢+ s a necessary and
sufficient measure of the shared values needed to enforce mutual exclusion, both for
PV-chunk and for test-and-set. :

In the special case of a clique (all nodes connected), we have 3 threshold graph
Theorems 3.1 and 4.4 of [2].
graph, test-and-set may require less storage.

Example 5.1, we consider a system S consisting of four processes A, B, C, and
D (Fig. 4), such that each of A and C conflict with each of B and D. (This is the case

-n=4 of the famous dining philosophers problem. See, for instance, [10]) We can

avoid conflict using test-and-set with one shared variable, values 0 through 3; to avoid

FiG. 4

(23

162 EDWARD T. ORDMAN

conflict using PV-chunk requires at least two shared variables and four bits to store
the shared variables.

We first give a solution for test-and-set. Let A and C each incorporate the entry
protocol:

test V until V=0 or 1 then Vi=2x V+1
(i.e., change 0 to 1 or change 1 to 3) and the following exit protocol:
Vi=(V-1)/2.
Let B and D have the following entry protocol:
test V until V=0 o0r 2 then V= V/2+2
(i.e., change 0 to 2 or change 2 to 3) and the following exit protocol:

Vi=2%(v-2)

executing its entry protocol to enter its critical section, changes one or more of
Vie o, Vo it fails to enter its critical section if some V, cannot be sufficiently
decremented at this time. Denote by g, through d, the decrements that A through D,
respectively, apply to each Vi and by 1, the maximum permissible value of each V,.
Now for each k, the labels a, through d, and maximum Ik induce a graph on the four
vertices (possibly with no edges) showing the processes prevented from running at
once by that V,; in [9] it has been shown that each graph induced in this fashion js
a threshold graph. The square denoting the system S is the union of these graphs.
Since the square is not itself a threshold graph, there must be at least two 'V, 's:
PV-chunk operations cannot control S with just one shared variable.

Here is a simple solution using two shared variables, both initialized to 2 before
the processes begin execution. Note that it does enforce the necessary mutual exclusion,
is deadlock-free, but is not lockout-free and does not have bounded waiting.

A’s Entry Protocol: Test Vi until V, =2 then Vi= V-2,
A’s Exit Protocol: Vi=V, +2;
B’s Entry Protocol: Test Vi until V,=1 then Vi=V,—1,
Test V; until V.21 then Vo= V,—1:
B’s Exit Protocol: Vi=Vvi+1;
Vo= Vo4 1,
C’s Entry Protocol: Test V> until V,=2 then Vo= Vo-2:
C’s Exit Protocol: Vo=V, +2;
D’s Protocols are the same as B’s.

In fact, the square can be a union of threshold graphs in very few ways: the
threshold graphs that are subgraphs of the square are (i) the single edge, which we
can take as having 1 = 1 and each vertex labeled 1; and (ii) the union of two adjoining
edges, which we can take as having the central vertex labeled 2, each end vertex 1,

*__—_“

and t = 2. Thus t}
notion of equiva
controlling two ¢
or (ili) one varia;
values 0 to 1, ey
requires two bits
and at least four b
Example 5.1. Son
this example hav

Example 5.2,
accessing data ba
problem concerni
think about it in t
example is an ex;
§4. In the stand:
access the same re
others (writers) w
update or read-an.
proceed at once; :
lock on the recor
overlapped with a
record.

Suppose a d:
fields in a record ;

1: 0

where the first thr
record so we can
field 4, "TAMOUN-
due, might chang.
different office, the
each of the four fi
field, or to write th
For example, .
the form “Does sa
from field 3) woul.
salesman 3057 in o
at the same time, i:
3057 in office 103,
2W (“delete all rece
due from account ¢
Interestingly,
IR, 1W, ... 4R, 4\
graph that is a thre
vertices in the sets (
to vertices in the set
conflict with each ot
Thus, if we ha
which might appea
including the indica

:s and four bits to store

ch incorporate the entry

rotocol:

‘otocol:

ction (or entry or exit
and 3 if both A and C
possible shared values
-Set to enforce mutual

itrol this system using
pose there are shared
. B, C, and D, while
Nges one or more of
cannot be sufficiently
nts that A through D,
ible value of each Vi.
-¢ a graph on the four
nted from running at
iced in this fashion is
1ion of these graphs.
J¢ at least two ‘Vi's:
able.
nitialized to 2 before
dry mutual exclusion,
1ded waiting,

V-2

very few ways: the
gle edge, which we
on of two adjoining
ciach end vertex 1,

MEMORY REQUIREMENTS FOR SYNCHRONIZATION 163

and t =2, Thus the minimal sets of V, associated with the square, up to some reasonable
notion of equivalence, must be one of (i) V, and V>, each with values 0 to 2, each
controlling two edges; (ii) Vito V,, each with values 0 to 1, each controlling one edge;
or (iii) one variable with values 0 to 2, controlling two edges, and two variables with
values 0 to 1, each controlling one edge. Since a variable with values 0 through 2
requires two bits to store the shared variables, this means at least two shared variables
and at least four bits of shared memory are needed to control this system. This completes
Example 5.1. Some arguments very similar in philosophy to those in the latter part of

§4. In the standard problem, there are in a system several transactions wishing to
access the same record: some (readers) want to read data from it without changing it;
others (writers) want to change the daty (we oversimplify here by not distinguishing

where the first three are keys, that is, Jointly they uniquely identify the customer’s
record so we can find the amount due from the customer; this amount is stored in
field 4, “AMOUNT.” |t is possible that one or more of the keys, as well as the amount
due, might change becayse of, e.g., the customer moving to a region served by a
different office, the salesman being replaced, or two customer firms merging. Thus, for

For example, a transaction of type 2R (read fields to 2) would answer a query of

3057 in office 103. The second transaction could not proceed simultaneously with a
2W (“delete all records for salesman 3057 in office 103"") or 4 4R (“what is the balance
due from account 566, office 103, salesman 30577,

Interestingly, a set of transactions consisting of transactions of types
IR, IW, -+ 4R, aw (and similarly for longer sets of multiple keys) has an exclusion
graph that is a threshold graph. The transactions of tvpe IW, ... 4qw correspond to
vertices in the sets C,---, C,, respectively, and those oftype IR, - . . » 4R correspond
to vertices in the sets Dy, - D,in the normal form of 3 threshold graph. (All writes
conflict with each other: no reads conflict with each other: jR conflicts with kWifj=k)

Thus, if we have an upper bound on the number of transactions of each type
which might appear in the system at one time, we could manage record locking—
including the indicated partia record locking—with PV.chunk operations on a single

164 EDWARD T. ORDMAN

shared variable. If we knew there would be at most four operations of each of the
“read” types, the labels of the corresponding vertices would be | for 1R, 5 for 2R, 25
for 3R, 125 for 4R, and the S€parator would be t=624. Mutual exclusion could be
managed using a single shared variable capable of assuming 625 distinct values.
Interestingly, changing the number of writers—the transactions that appear to
require the most extensjve locks—does not change these numbers; to reduce we must

t:if there were at most two transactions of types 1R and 2R, and at most six each of
types 3R and 4R, then we would have

t=(2+1)(2+1)(6+1)(6+l)—1 =440.

6. Conclusions and additional problems. Earlier papers such as [2] present a carefy]
analysis of the amount of shared memory required to solve the problem of mutual

for some sets of processes, but not others, to enter critical sections simultaneously.
A major step in this direction appears in [12], which bounds the delays occurring in
the mutual exclusion algorithm by imposing a “locality” condition: particular processes
are constrained to share resources only with a limited number of other “nearby”
processes. It would be desirable to have efficient solutions, and bounds on possible
solutions, for other more general cases. This paper considers systems of asynchronous
parallel processes in which the desired mutual exclusions can be modeled by a threshold

that PV-chunk may, in fact, provide an efficient too] for certain kinds of partial-record

in efficient hardware than the general test-and-set operation? Does test-and-set solve
these other problems with significantly less memory, or significantly faster algorithms,
than simpler synchronization primitives? A referee suggests that in some sense Theorem
4.2 does not appear to depend on the synchronization primitive used. The number

I+1 is in some s
represented in the
Example 5.1, it ap:
this be measured r
using one primitiv.

Acknowledgme
The referees sugge
remaining awkwar.

[1] T. BLoom, Evalua
Systems Princi
[2] J. E. BURNS, P. Ja
Jfor implementa
Mach., 29 (19%
{3] V.CHvATAL AND
(1977), pp. 145
[4] A. CREMERS ANI
variable, in Lec
165-176.
{5] E. w. DUKSTRA, &
569.
, Cooperatin:
New York, 196
[7]1 K. ECkER AND S,
und Datenvera:
{8] P. ErpOS, A. W. G
J. Math., 18 (1¢
[9] P. B. HENDERSON
synchronization
[10] D. LEHMAN aND
solution 1o the d
Programming L
[11] R. LirTON, L. Sxy
in Proc. 15th A
pp. 145-155.
[12] N. A LyNCH, Upp.
Sci., 23 (1981),
[13] M. C. Gorumsic,
[14] N. LyNCH anD M
Theoret. Compu
[15) E. T. ORDMAN, Th)
Conference on «
99-113.
[16] J.ORLIN, The minim
[171 G. L. PETERSON, (
pp. 46-55.

t6]

& T e

-ations of each of the
1 for IR, 5 for 2R, 25
4l exclusion could be
§ distinct values.

ctions that appear to
s; to reduce t we must
consistent in a broad
v to avoid delays is
writer is considered).
another does change
id at most six each of

1s {2] present a careful
¢ problem of mutual
ns, it may be possible
~s simultaneously.

-~ occurring in
-ticular processes

¢ of other “nearby”
I bounds on possible
ems of asynchronous
odeled by a threshold
[12], since threshold
ated) vertices. In our
on or other desirable
1 the entry protocol
d variable with range
ding threshold graph.
¢ minimal separator
written as a product
the graph (this could
liques; see also [15]).
ink requires no more
\n example suggests
n with fewer shared
ral example suggests
nds of partial-record
in data base systems.
t ways of managing
n threshold graphs,
rm of graph models
here.) Can we find
J1s mutual exclusion,
veasier to implement
¢s test-and-set solve
ly faster algorithms,
~ome sense Theorem
* used. The number

MEMORY REQUIREMENTS FOR SYNCHRONIZATION 165

{+1 is in some sense a measure of the space needed to synchronize the processes
represented in the graph, without regard to exact method. Can this be formalized? In
Example 5.1, it appears that test-and-set needs less memory than PV-chunk; how can
this be measured more systematically? Finally, is it connected to Lipton’s concept of
using one primitive to *“‘simulate’” another [11}?

Acknowledgments. The author had numerous helpful discussions with Y. Zalcstein.
The referees suggested extensive revisions to improve clarity of the presentation; the
remaining awkwardness is due to the author. :

REFERENCES

[t] T. BLooM, Evaluating synchronization mechanisms, in Proc. 7th Annual ACM Symposium on Operating
Systems Principles, (ACM SIGOPS), Pacific Grove, CA, 1979, pp. 24-32.

[2] J. E. BURNS, P. JACKSON, N. A. LYNCH, M. J. FISCHER, AND G. L. PETERSON, Data requirements
Jor implementation of N-process mutual exclusion using a single shared variable, J. Assoc. Comput.
Mach., 29 (1982), pp. 183-205.

[3] V. CHVATAL AND P. HAMMER, Aggregation of inequalities integer programming, Ann. Disc. Math., 1
(1977), pp. 145-162.

[4] A. CREMERS AND T. HIBBARD, Murual exclusion of N processors using an O(N)-valued message
variable, in Lecture Notes in Computer Science 62, Springer-Verlag, Berlin, New York, 1978, pp.
165-176.

[5] E. W. DUKSTRA, Solution of a problem in concurrent programming control, Comm. ACM, 8 (1965), p.
569.

, Cooperating sequential processes, in Programming Languages, F. Genuys, ed., Academic Press,

New York, 1968.

[7] K. ECKER AND S. ZAKS, On a graph labeling problem, Bericht Nr. 99, Gesellschaft fiir Mathematik
und Datenverarbeitung MBH Bonn, Federal Republic of Germany, 1977.)

[8] P. ERDOS, A. W. GOODMAN, AND L. POSA, The representation of a graph by set intersections, Canad.
J. Math., 18 (1967), pp. 106-112.

[9] P. B. HENDERSON AND Y. ZALCSTEIN, A graph-theoretic characterization of the PV-chunk class of
synchronization primitives, SIAM J. Comput., 6 (1977), pp. 88-108.

[10] D. LEHMAN AND M. O. RABIN, On the advantages of free choice: a symmetric and fully distributed
solution 1o the dining philosophers problem, in Proc. 8th Annual ACM Symposium on Principles of
Programming Languages, 1981, pp. 133-138.

[11] R. LirTON, L. SNYDER, AND Y. ZALCSTEIN, A comparative study of models of parallel computation,
in Proc. 15th Annual Symposium on Switching and Automata Theory, New Orleans, LA, 1974,
pp. 145-155.

[12] N. A. Ly~NcH, Upper bounds for static resource allocation in a distributed system, J. Computer System
Sci., 23 (1981), pp. 254-278.

[13] M. C. GoLumsic, Algorithmic Graph Theory and Perfect Graphs, Academic Press, New York, 1980.

[14] N. LYNCH AND M. FISCHER, On describing the behavior and implementation of distributed systems,
Theoret. Comput. Sci., 13 (1981), pp. 17-43.

[15] E. T. ORDMAN, Threshold coverings and resource allocation, in Proc. 16th Southeastern International
Conference on Graph Theory, Combinatorics, and Computing, Congr. Numer., 49 (1985), pp.
99-113.

[16] J. OrLIN, The minimal integral separator of a threshold graph, Ann. Discrete Math. 1 (1977), pp. 415-419.

[17] G. L. PrTiRsON, Concurrent reading while writing, ACM Trans. Programming Lung. Syst., 1 (1983),
pp. 46-55.

(6]

