[

Cliques in Hypergraphs and
Mutual Exclusion using Tokens

Edward T. Ordman
Department of Mathematical Sciences

University of Memphis*, Memphis, TN 38152 U.S.A.

Abstract

Token-passing algorithms are a well-known way of solving dis-
tributed mutual exclusion problems in computer networks. A simple
abstraction of the concept of tokens allows the use of elementary con-
structions in general hypergraphs to show that certain sets of tokens
are minimal. This suggests other problems about hypergraphs wor-
thy of exploration. As an application, we introduce a new mutual
exclusion problem, the Ezcluded Tazpayer Problem, which requires
exponentially many tokens even though it can be solved in linear
time by other methods.

1 Introduction.

The aim of this paper is twofold: first, it describes a computer science
problem in sufficent detail to raise some graph theory problems, and takes
small steps toward solutions. Second, it demonstrates the utility of these
techniques by introducing a new mutual exclusion problem (the Ezcluded
Tazpayer Problem, in section 5) which distinguishes the power of two pro-
gramming techniques; the graph theory results show that this problem re-
quires exponential effort to solve using token systems, although it can be
solved with linear effort using shared variables.

In a collection of computer processes, it may be that not all the processes
can be active at one time. For example, several processes want to use the
printer but only one at a time can do so. Many studies of this problem in

wies 29
pF Com

* A recent name change from Mémphis State University.

1
q. 224 50 6l 208 b0 wmrbarbii:
b el M}rfhm%é ¢’W}""’7"""l
er)?vl "»'55 / }4 6; 7‘;}7/)

the computer science literature restrict themselves to the special cases in
which the pattern of mutual exclusion can be modelled by a graph. (e.g.,
[2, 6, 8].) In this model, two processes are connected by an edge if and only
if the two cannot be active at the same time. (If five processes are trying to
use the same printer, of course, no two can do so at the same time, so all of
the edges are present: the graph is a clique.) There has been a productive
interaction between graph theory and computer science resulting from the
search for classes of graphs for which nice mutual exclusion algorithms exist,
e.g. (2, 8, 10].

There are a few studies of cases not modelled by a graph. The best
known is the k of n entry problem (see section 4.2), in which there are n
processes and at any time, at most k of them are allowed to be active. See,
for example, (7, 12, 13]. This is not modelled by a graph, since no two
processes exclude each other. It is easily modelled by a hypergraph.

There are relatively few studies of more general cases. One reason for
this is that the general case seems to present mathematically difficult ques-
tions. One purpose of this paper is to phrase some of the interesting exam-
ples and questions in terms of hypergraphs, illustrate some useful results,
and ask some questions about hypergraphs whose answers would help with
the computer science problems.

The reader with even a modest acquaintence with graphs and hyper-
graphs may find it useful to read section 2.3 first, for motivation.

This research was initially motivated by discussions with Abdelmadjid
Bouabdallah and Mohammed Naimi which took place during a visit by the
author to the University of Paris at Orsay. The visit was supported by
grant INT-9115870 of the National Science Foundation.

2 Definitions and motivating examples.

2.1 Graphs.

Definition 1. Our graphs will always be simple undirected graphs without
loops or multiple edges. If G is a graph a typical edge of G will be denoted
as a pair (a, b); note that (a,b) = (b, a). A clique or complete subgraph in G
will typically be denoted (a, b, c,d) (the number of vertices is two or more);
this is a subgraph, not necessarily mazimal, such that any two vertices in it
are connected by an edge in G.

We will speak of a clique quite casually, as if it consists of the vertices
a,b,... OR as if it consists of the edges (a,b),(a,c),{b,c),..; we say it

contains both the vertices and the edges. By the size of a clique we mean
the number of vertices in it; a clique of size n has n(n — 1)/2 edges.

Definition 2. A clique covering of a graph G is a set of cliques C =
{C1,Ca,...,Ck} such that (1) every edge of any C; is an edge of G, and
(2) every edge of G is an edge of at least one C;.

A mutual exclusion problem (these will be defined below) often arises
in the form of a list of sets of processes no two of which can perform some
action “at the same time”. This situation may sometimes be modelled by
a graph given by means of a clique covering. Thus, instead of representing
a graph by a set of edges, such as G = {(a,b),(a,c),(b,¢),(b,d),(c,d)},
we may choose to represent it by a set of cliques of a clique covering. The
following are both notations for the graph just given: {(a,b,¢c), (b,d),(c,d)}
and {(a,b,c),(b,c,d)}. The last of these includes two overlapping cliques,
which is expressly allowed. Note that G # {(a,b,c,d)} since (a,d) is not
an edge of G.

2.2 Hypergraphs.

A warning: the notation given here for hypergraphs, and particularly for
cliques in hypergraphs, is nonstandard. We introduce this nonstandard
construction expressly to simplify the representation of mutual exclusion
problems.

Definition 3. Given a set S, a hypergraph H on S is a collection of
subsets of S such that each H; € H has at least two elements.

An element of H is called a hyperedge of H. We will say a hyperedge
H; contains a hyperedge H; if H; O H;. The cardinality of a hyperedge is
the number of vertices in it.

As with graphs, we will casually denote a hyperedge as (a, b, ¢, d) rather
than the more formally correct {a,b,c,d}. A hypergraph is uniform if all
its hyperedges have the same cardinality.

Definition 4. A hyperclique of size k and cardinality e will be typically
denoted A = ((a1,...,ax),e). It includes every hyperedge of cardinality e
selected from the set of vertices {ay,...,ar}.

Thus a graph clique (a,b,¢, d,e) is a special case ((a,b,¢, d, e),2). A
hyperclique is a uniform hypergraph. A hyperclique of size k and cardinality
e contains k Choose e edges.

The hypergraph H contains the hyperclique A if every vertex of A is in
H and every hyperedge of A is in H. In particular, if B and B’ are two sets

of at least e vertices each and B O B’, then the hyperclique (B, ¢) contains
the hyperclique (B’, €).

Definition 5. A set A = {A;,..., Ax} of hypercliques will be called a
hyperclique covering of the hypergraph H if

1. Every hyperedge of each A; is a hyperedge of H.

2. Every hyperedge of H is a hyperedge of some A;.

We can now represent a hypergraph, like a graph, by listing either the
hyperedges or any hyperclique covering of the hyperedges. For example, let
S = {a,b,c,d} and H = {(a,d), (a,b), (b,c), (b,c,d)} Then H could also
be represented as {((a, b,¢),2),((b,c,d),3)}.

2.3 Mutual Exclusion Protocols.

We take the following formulation of the mutual ezclusion problem as a
motivation below. Suppose that there is a set S of processes 51, Sz, - . . Sn.
For purposes of this paper we may suppose each is a program running on its
own computer. Each process has a special part called a critical section. We
suppose that certain sets of these processes may not all be in their critical
sections at one time. We will call such a set of processes mutally ezcluding.
We suppose that if a set of processes is mutually excluding, so is any larger
set (superset).

Informally, we will say that process k runs as an abbreviation for process
Sk is in its critical section.

A mutual exclusion problem may in practice be described in a variety
of ways; we will see some examples below. Clique coverings of graphs were
stressed above because often the description of a problem contains, or can
be rephrased as, something resembling “processes 1 and 2 cannot run at
the same time; processes 1 and 3 cannot run at the same time; no two
of processes 3, 4, and 5 may run at the same time.” This is of course
just a description of an ezclusion graph with clique covering {(1,2), (1,3),
(3,4,5)}. The statement “no four of processes 2, 4, 6, 8, 10, or 12 can run
at once” is a description of an ezclusion hypergraph containing all sets of
four processes from that set — that is, the hyperclique ((2,4, 6, 8, 10, 12),4).

In a common way of managing this problem, each process goes through
a preliminary algorithm called an entry protocol before entering its criti-
cal section, to determine whether it can enter without causing a mutually
excluding set of processes to be running at once. On finishing its criti-
cal section, it usually executes an ezit protocol which may, for example,

involve telling another process it may now enter. It may then perhaps en-
gage in other activities (its remainder section) before possibly deciding to
try to enter its critical section again. Entry and exit protocols may involve
accessing shared variables, passing messages, or other ways of exchanging
status information. For more detailled discussions and motivations see, e.g.,
1.

For the present paper, in order to stress the hypergraph questions, we
propose a drastically simplified model of an entry protocol. We suppose
the existence of a multiset (set with repetitions allowed) T of tokens which
will be used to regulate entry into the critical sections. Each process S; has
associated with it a set 7T}, a subset of T, such that S; may enter its critical
section if and only if it has obtained the tokens in T;. Thus we suppose
the existence of, let us say, a bowl B initially containing all the tokens of
T. One process S; at a time examines the bowl; if it finds the tokens T; it
needs, it takes them from B and enters its critical section; if not, it waits
until a later time to try again. Once S; is done examining the bowl, another
process has a turn to do so. Any process exiting its critical section returns
its tokens to the bowl, so that they may be used by another process. Only
one process at a time may work with the bowl. More formally:

Algorithm: Mutual exclusion using tokens
For each Process:
Global shared data Bowl {a multiset of tokens}
Local variable Success initially True
Begin :
entry protocol:
Lock(Bowl);
for each token in my set do
if present in bowl
then remove it from bowl;
else set Success to False;
end for
Unlock(Bowl);
if Success then enter Critical Section
else wait and try again later;

critical section

erxit protocol:
Lock(Bowl);
return my tokens to Bowl;
Unlock(Bowl);

end.

Given an appropriately careful definition, any mutual exclusion problem
may be solved (i.e., the exclusion enforced) by an appropriate system of
tokens; we prove a very simple version of this in the next section and
leave a more complete discussion for elsewhere. The primary purposes of
this paper are to establish some conditions under which a set of tokens is
minimal, to present an interesting example, and to state some problems
about hypergraphs that arise along the way.

One part of the search for efficient mutual exclusion algorithms involves
finding classes of mutual exclusion problems and functions that will rapidly
compute whether a set of processes P contains any mutually excluding
set. By “rapidly” we mean, loosely, in time polynomial (preferably of low
degree) as a function of the number of processes or as a function of the
information available about the collection of mutually excluding sets. Of-
ten, finding such a function turns on finding a concise description of the
collection of mutually excluding sets. The collection of mutually excluding
sets, of course, is a hypergraph. We summarize as follows:

Problem 1. Find quick ezclusion functions. Given a set of vertices S
and a hypergraph H on those vertices, find a function Iy which, given a
subset S’ of S, will quickly determine whether S’ contains any hyperedge
of H. (We may regard Zx(S') as a boolean function, with the value true if
S’ contains a hyperedge.)

The Taxpayer Exclusion Problem in section 5 below illustrates this well;
there we construct a hypergraph on n = 300 vertices, with a great many
hyperedges (3% hyperedges of cardinality 100) and give an algorithm
which determines whether a set of vertices contains a hyperedge and runs
in time and space linear in n.

Problem 2. Find quickly excluding classes of hypergraphs. Find classes
of hypergraphs for which there exist quick exclusion functions, and find the
functions.

Hypercliques are clearly such classes. Among graphs, threshold graphs
(discussed in section 4.3 below) are an excellent example; see for example

[6].
Problem 3. Identify and parametrize a hypergraph. Given a hypergraph,

discover quickly if it is in one of the quickly excluding classes, and determine
its quick exclusion function.

For graphs, for example, we know that threshold graphs can be recog-
nized in linear time 3, 6, 11]. In section 4.3 we define threshold hypergraphs
similarly, so as to satisfy Problem 2; but it is less clear whether one can
recognize a threshold hypergraph quickly enough to usefully solve Problem
3.

The rest of this paper consists of showing how some particular mutual
exclusion problems look when presented this way, and then poses some
questions on hypergraphs whose answers would allow the easy solution of
more extensive classes of mutual exclusion problems.

Real protocols are of course often more complex, but the model sug-
gested here is of interest since (1) it raises interesting combinatorial and
hypergraph questions, and (2) it can be used to show some limitations of the
use of tokens. The reader wanting to know about more realistic algorithms
may want to look at a distributed processing textbook, e.g. [1].

3 Tokens for geheral hypergraphs.

We need a bit of terminology and notation. A set has no repeated elements,
while a multiset may have repeated elements: {a,b,c} is a set of three
elements and {a,b,b,c} is a multiset of four elements, with three distinct
elements. When we must distinguish multiset union from set union, we
denote it U*, so that {a,b} U {b,c} = {a,b,c} while {a,b} U* {b,c} =
{a,b,b,c}.

Unless otherwise specified, C and similar symbols refer to multisets
whenever a multiset is involved in the comparison; hence it is false that

{a,b,b,c} C {a,b,c}.

The repeated elements of a multiset are said to be of the same type;
when we use a multiset of tokens, we use the same phrase to denote indis-
tinguishable tokens.

We begin by showing that, given an arbitrary mutual exclusion hyper-
graph, there is a (possibly very large) token system that will enforce the
mutual exclusion.

Theorem 3.1 Let H be a hypergraph on a set S. There is a multiset T
and there are sets T} such that T,U*...U* Ty C T if and only if {Sa, ..., Sb}
contains no hyperedge of H. -

PRrRoOF: For each hyperedge Hj of cardinality f of H we introduce f —1
tokens tg. (The f — 1 tokens associated with a given hyperedge are of the

same type). All these tokens together form T. For each S;, let T; contain
one copy of t; if and only if S; is a vertex of the hyperedge Hi. Now no set
of S;’s containing a hyperedge Hj can obtain all their tokens at the same
time, since there are not enough t;’s available. But any set of S;’s not
containing a hyperedge can get enough tokens; simply pass out the tokens
to them “one hyperedge at a time” to see that there are enough. |

The above method may use far too many tokens. For example, if five
processes are trying to share one printer, this would assign ten tokens — one
for each edge in the graph. Each process would demand four tokens (to
lock out the other four processes.) But the graph is a clique, and only one
one token is needed! This fact easily generalizes.

Proposition 3.2 Let H be a hypergraph on S and let D be a hyperclique
covering of H. Then mutual exclusion can be enforced by a system of tokens
with one token type per hyperclique, and each token having one fewer copies
than the cardinality of its hyperclique.

PrRoOOF: For each hyperclique C; of cardinality f, create f — 1 tokens Tj.
Let T; include a single ¢ if and only if S; is in Cy. It is easy to check that
a set of S;’s can each obtain their required tokens if and only if the set
intersects every hyperclique Cj in a set of vertices less than the cardinality
of Ci, as desired. a

There is a converse to this result. Any token system gives rise to a
clique covering. Given a set S of processes, a multiset T" of tokens, and a
set T; of tokens wanted for each S;, we define a hypergraph as follows: For
each set of indistinguishable tokens t; in T' (suppose there are j copies of
t;), and each S; having a copy of t; in T;, we let the set of those S; form
a hyperclique of cardinality j + 1. The set of all such hypercliques form a
hyperclique covering of a hypergraph H.

Theorem 3.3 Let H be a hypergraph on S corresponding to a mutual ez-
clusion problem. If there is a hyperclique covering of H by exzactly c hyper-
cliques, then there is a token system for the mutual exclusion problem with
exactly c types of tokens, and conversely.

The reader should be warned that this theorem was relatively easy be-
cause of the restriction that each process wanted only a set and not a
multiset of tokens: that is, it wanted no more than one token of each type.
If we replace the sets T; with multisets, the sets of indistinguishable to-
kens no longer induce a covering by hypercliques, but rather by threshold

hypergraphs; see section 4.3 below. The author has explored (8, 10] the
relationship between these two coverings for graphs, but the situation for
hypergraphs appears to be more difficult.

4 Simple examples.

4.1 Cliques in Graphs: Simple Mutual Exclusion.

Example 1. Classical Mutual Ezclusion. [5] There are n computers
wanting to use the printer; only one can do so at a time. There is exactly
one token, T = {t}, every T; = {t}, and the time needed for a process to
determine if the token is available is O(1).

The above example works because the minimal mutually excluding sets
include all pairs of processes. The mutual exclusion graph is a clique. The
following result, then, is trivial.

Proposition 4.1 The set of cliques is a quickly ezcluding set of graphs.
For any clique C and any subset S’ of S, Ic(S') = true if S’ contains at
least two elements. ‘

Can we easily recognize members of this class? While finding a minimal
clique cover of an arbitrary graph is NP-hard, it is in fact easy to check
whether a given graph is a single clique. How long it takes, however, may
be a function of how the graph is given to us. If it is given as a single
clique, {(1,2,...,n)}, we merely need read the description (of length O(n))
to check; the work involved is O(n). If we are given a full list of edges,
{(1,2),(1,3),...,(n — 1,n)} then the length of the description in O(n?)
and we must do that much work merely to read it. In fact, if we are given
an unreasonably large clique covering of a graph (say, the entire power set of
the vertex set, less singletons, with all cliques that include vertex n placed
at the end of the list) we may have to read nearly the entire list (surely at
least O(2") characters) before we can confirm that all edges are present.

Let us suppose that D is a description of a graph G given by a clique
covering (or of a hypergraph given by a hyperclique covering.) Let d be the
length of D, in characters. The above argument suggests that it is probably
unreasonable to try to establish whether a graph G is a clique in less work
than O(d), for some D with d in the range O(n?) < d < O(2"). On the
other hand, it may take somewhat more than O(d) steps, if D has many

cliques that must be expanded. Can this be made more precise? Here is a
small step:

Algorithm 1. Let D be a clique covering description of a graph G on n
vertices, and suppose D has k cligues. Then we can determine if G is a
single clique in time no more than O(kn?).

Here is an algorithm. Note that if n is not given initially, a first phase
may be added: read the entire description D and set n to be the largest
vertex label found. If the names of vertices used in D are not consecutive
natural numbers, count the labels that are found and make a substitution.

Algorithm: Does a clique covering describe a clique?
integer counter initially 0;
array Efi,7]); 1<i<j<n initially 0;
begin »
for each clique ¢ in D do
for each edge (r,s), (r < s), of the clique c do
begin if E[r,s] = 0 then
begin counter=counter+1; E[r, sj:=1,
if counter = n(n — 1)/2) then THE GRAPH IS A CLIQUE;
end;
end;
end.

Loosely, we examine each clique in turn, making an entry in the adja-
cency matrix for each edge, counting each edge when it first occurs.

The difficulty is in counting the number of edges generated, ie., the
number of times we must look in the table E. A clique covering may cover
each edge many times. For example, if our clique listing had O(n) cliques
each of cardinality O(n), we would examine O(n?) edges per clique, for a
total of O(n?) edges. The work would thus exceed the length O(n?) of D.
Can a clique covering with description of length only O(n?) ever require
O(n*) work to check?

4.2 Hypercliques: k.of n problems.
Example 2. The k of n entry problem. (7, 12, 13] Suppose there are

n processes, Sy through S,. At most k are allowed to enter their critical
section at one time. The minimal mutually excluding sets are now the

10

n Choose (k+1) possible sets of size k+ 1. The length of the full hyperedge
list is now O(k(n Choose k)), while the hyperclique description contains
exactly one hyperclique of size n and cardinality k¥ + 1. The hyperclique
description is of length O(n) and it is very easy to test any proposed set of
active processes against it.

We can build a token system easily: provide k identical tokens and have
each process require exactly one token to enter.

Proposition 4.2 The set of hypercliques is a quickly ezcluding set of hy-
pergraphs. We can test the ability of a process to enter its critical section

in time O(k) < O(n).

This is true even though the hyperedge description of a hyperclique is
potentially very large (there are n Choose k hyperedges.) Again, we ask:

Problem 4. Can we quickly recognize a hyperclique, if the hypergraph
is given in some other form? The question seems much harder than for
graphs.

4.3 Threshold graphs: readers and writers.

Example 3. The readers-writers problem. Suppose we are given n
processes R; and n processes W;. Each W; is attempting to write the same
data record A; each R; is attempting to read it. The mutual exclusion
problem is this: No other process can access the data while a writer 18
writing. That is, any number of readers may work if no writer is working,
or exactly one writer may work. Fixing n = 3 to simplify notation, the
mutual exclusion problem is modelled by the graph

{(WI’ W2)’ (Wl: W3)’ (WZ) Wa), (Wl, Rl)) (Wl» Rz), (Wla R3)r (W2s Rl)a

(W2, R2), (W, Ra), (Ws, R1), (W, Ra), (W3, Rs)}
which could equally well be written

{(W1, Wa, Wa, Ry), (W1, Wa, W3, Ry), (W1, W2, W3, Ra)}

Here we clearly see the advantage of using clique coverings instead of
full graph descriptions. For a system with n readers and n writers, the
exclusion graph has n(n — 1)/2 + n? = O(n?) edges; the corresponding
clique covering has exactly n cliques. Since the cliques are of size n+1 but

11

of cardinality 2, we need only one token for each clique; each writer will try
to obtain all n tokens while a reader will settle for only one.

This example has another particularly nice feature: there is no need to
label the tokens. That is, all n tokens can be treated as interchangeable.
This departs from our standard model, in that it requires the writers to
demand a multiset, rather than a set, of tokens. But it puts the problem
into a well-known class: the graph is a threshold graph (3, 6].

Definition 6. A graph is called a threshold graph if each vertez vi has a
positive integer labelty and there is @ positive integert (called the threshold)
such that any pair of distinct vertices v; and v; is connected by an edge if
and only if t; +t; > t.

A hypergraph is called a threshold hypergraph if each vertez vy has a
positive integer labelt, and there is a positive integert (called the threshold)
such that any set {v;,...,v;} of vertices contains a hyperedge if and only if
i+ -+t >t

A threshold graph and a threshold hypergraph share the property that
a mutual exclusion problem modelled by them can be implemented in the
following easy way: Give each process the label ¢; corresponding to its
place in the (hyper)graph. Given a set of processes, add their labels: if
the sum exceeds t, the set is mutually excluding. In the computer science
literature, algorithms for such exclusion problems are often implemented

using computer operations called PV}, .. 1 operations [6].

It is NP-complete to determine even whether a graph can be covered
by two threshold graphs [4], much less three or more; but it is very quick
to determine if it is a threshold graph [6, 10, 11].

Problem 5. Can we recognize if a given hypergraph is a threshold hyper-
graph, and determine the threshold and vertezr labels? Again, we suppose
the graph is given by a hyperclique covering (possibly a full hyperedge list)
and would like the answer to be found in a time polynomial in the length
of the covering.

Threshold graphs (and hypergraphs) may have very long (hyper)edge
lists. We are most often interested in the ones with relatively small (hy-
per)clique covers, since they are the ones with small token systems. A
threshold graph on n vertices always has a clique cover of at most n — 1
cliques, and it is easy to find [6, 8, 10].

Problem 6. Does a threshold hypergraph necessarily have a small hyper-
cliqgue cover?

12

5 A new example: The Excluded Taxpayer
Problem.

It is now natural to look for a more pathological example. Are there natural
problems where no reasonably-sized token system will do? Can we find
evidence that there are classes of hypergraphs which are tractable, even
though they have no small hyperclique coverings? The following example
gives affirmative answers.

It is in general NP-complete to find a minimal hyperclique cover (or
even a clique cover). However, there are interesting special cases in which
we can recognize that a hyperclique cover (or a token system) is minimal,
by ad hoc methods. The example below is of interest, as showing how bad
the pathology can be, and also showing that clever entry protocols can
succeed.

Example 4. The Ezcluded Tazpayer Problem. The name of this problem is
suggested by the somewhat obscure American joke, Don’t taz you, don’t laz
me, taz the fellow behind the tree. Suppose we have a legislature containing
n members, each of whom represents one of k interest groups. If at least
one representative of each interest group is present at a meeting, no tax
plan can be passed. However, if all representatives of interest group i are
absent, the members present can agree to tax group i. Accordingly, we
need an algorithm which prevents a member from entering if her entrance
would mean all groups would be represented.

Assuming that k divides n and exactly n/k members represent each
group, we denote representative i from group j by r;j;. (for concreteness,
consider n = 300 and k = 100, with 3 representatives for each of 100
interest groups.) Process rj; may enter the meeting (its critical section)
if and only if there is some t,¢ # j such that no r¢, is present. Clearly,
the minimal mutually excluding sets consist of exactly k& members, one
from each group. Thus the number of such sets is (n/ k)¥. No set contains
another. No collection of these sets form a hyperclique of cardinality greater
than k, since any set larger than k contains two members of the same group
and they are not together in any minimal mutually excluding set.

We first argue that this is not an unreasonably hard mutual exclusion
problem. In fact, using standard tools such as shared-memory algorithms,
it can easily be solved in linear time and space. Suppose at the entrance
to the legislative chamber we place a chalkboard (shared memory) with
k labelled rows, each with a space for n/k marks. Each legislator, before
entering the legislative chamber, checks the chalkboard. If a member of her

13

group is in, she adds her mark in the appropriate row and goes in. If no
member of her group is in, she checks to be sure that at least one other
group is unrepresented and then adds her mark and goes in. If hers is the
only group unrepresented, she must go away and try later. On exiting the
chamber, any legislator must erase one mark from her group’s row. This
solution clearly involves shared memory of space exactly n bits and time
not exceeding n.

To meet the conditions promised in the discussion of Problem 1, in Sec-
tion 2.3 above, here is a more formal description of a similar algorithm
executed by each process R(j,i),j = 1...100,i = 1...3. This algorithm
uses integer shared variables, runs in constant time (assuming we can in-
crement an integer of size n, or test it for being zero, in constant time) and
thus allows us to test whether a set of points of cardinality n contains a
hyperedge in time essentially O(n).

Algorithm: Excluded Taxpayer, with shared memory
Global integer N initally 0; { number of groups represented }
Global array A[1..100] of 0..2 initially all 0;

Begin process R[j,i]:

entry protocol
Lock(N, A); guarantees unique access to data
if A[j] > 0 then begin A[j] := A[j] + 1; enter; end

else if N < 99 then
begin N := N + 1; A[j] := 1; enter; end
else wait and try later;
Unlock(N, A);

ezxit protocol
Lock(N, A)
Al = Al - 1
if A[jj=0then N:=N -1,
exit;
Unlock(N, A)
End.

Now let us try to solve this problem with a token system. Outside the
door of the legislative chamber is a bowl of tokens; each member has a
list of (distinctly labelled) tokens that must be taken from the bowl prior
to entering the chamber and returned on leaving. How many tokens are
needed? The solution of Theorem 3.1 would generate k — 1 tokens for each
of the (n/k)* hyperedges ~ in the present case, 99 x 3% tokens.

14

Theorem 5.1 For the Ezcluded Tazpayer Problem with n members evenly
divided into k groups, the minimal token system has (k — 1)(n/k)* tokens.

PROOF: We have seen above that the mutual exclusion hypergraph
has (n/k)* hyperedges each of cardinality k, and that these hyperedges
constitute the only possible hyperclique covering of the hypergraph: that
is, there is no hyperclique in the graph other than these hyperedges. Hence
any token system must give rise, by Theorem 3.3, to at least these (n/lc)k
hypercliques. Further, since in each hyperclique it is possible for k£ - 1
processes to enter at once, there must be at least k£ — 1 tokens of each type.
a

Again, this proof depends on the assumption that each process demands
a set of distiguishable tokens, not a multiset. The same theorem is true with
multisets allowed, but the proof is much more complex and is left to a later

paper.

This example shows that, in an appropriate sense, there are hypergraphs
on n vertices with no hyperclique covering of size polynomial in n. It also
shows that there are mutual exclusion problems on n processes, solvable in
linear time and space using shared variables, with no token system of size
polynomial in n.

We rephrase the situation from a slightly different point of view. Let
H(n,k) denote the hypergraph of the excluded taxpayer problem for n
processes in k groups of size n/k. This hypergraph has a very large number
of hyperedges. Testing for mutual exclusion by tokens needs a great many
tokens. But testing for mutual exclusion using shared variables is easy; so
describing the hyperedges of the hypergraph is, in a sense, easy.

Algorithm 2. Given a set S and a hypergraph H(n, k) on S, and a subset
H, of S, determine if H contains a hyperedge of H(n, k). The method
is as above: read the elements of Hy, making a tally by the group of each
element as one goes. If at the end there is at least one tally by each of the
k groups, then the set Hy contains a hyperedge.

This gives rise to a rather ill-formed, but highly applicable, specializa-
tion of Problem 2: what are some other classes of hypergraphs, in addition
to the class of H(n, k), having such efficient test algorithms?

Problem 7. Identify (classes of) hypergraphs which have “large” number
of hyperedges, and no “small” hyperclique coverings, for which there are
linear-time tests that will recognize sets of vertices which contain a hyper-
edge.

15

References.

(1] G. Andrews, “Concurrent Programming: Principles and Practice”, Ben-
jamin/Cummings, Redwood City, Ca., 1991.

[2] K. M. Chandy and J. Misra, The drinking philosophers problem, ACM
Trans. on Prog. Languages and Systems 6(1984), 632-646.

[3] V. Chvdtal and P. Hammer, Aggregation of inequalities in integer pro-
gramming, Ann. Discrete Math. 1 (1977), 145-162.

[4] M. B. Cozzens and R. Liebowitz, Threshold dimension of graphs, SIAM
J. Algebraic Discrete Methods 5(1984), 579-595.

[5] E. W. Dijkstra, Solution of a problem in concurrent programming control,
Comm. ACM 8(1965), 569.

(6] P. Henderson and Y. Zalcstein, A graph theoretic characterization of
the PV .hunk closs of synchronizing primitives, SIAM J. Comp. 6 (1977),
88-108.

[7] M. Naimi, Distributed algorithm for K-entries to a critical section based
on the directed graphs, Operating Systems Review, 27(October 1993).

[8] E. T. Ordman, Threshold coverings and resource allocation, Proc. 16th
Southeastern International Conf. on Graph Theory, Combinatorics, and
Computing, Congr. Numer. 49(1985), 99-113.

[9] E. T. Ordman, Dining philosophers and graph covering problems, J.
Combinatorial Mathematics and Combinatorial Computing 1(1987), 181-
190.

[10] E. T. Ordman, Minimal threshold separators and memory requirements
for synchronization, SIAM J. Computing 18(1989), 152-165.

[11] J. Orlin, The minimal integral separator of a threshold graph, Ann.
Discrete Math. 1(1977), 415-419.

[12] K. Raymond, A distributed algorithm for multiple entries to a critical
section, Inform. Process. Lett. 30(1989), 189-193.

[13] P. K. Srimani and R. L. N. Reddy, Another distributed algorithm for
maultiple entries to a critical section, Inform. Process. Lett. 41(1992), 51-57.

16

