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1984] PROBLEMS AND SOLUTIONS 439
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E 2928 [1982, 130]. Proposed by Doug Wiedemann, Institute for Defense Analysis.
Find imX¢x"/n"), x = — 0.

Solution by Mark Pinsky, Northwestern University, Evanston, IL. For any x,
o0
E xn/nn — xflexuln(l/u) du.
n=1 0
(This can be seen by expanding the exponential in a power series, uniformly convergent for
0 < u < 1, and integrating term by term.)
If x <0, the integrand is less than 1, except at u =0 and u = 1. For any § > 0, when
x — — oo integrating by parts yields

fse"“l"(l/“) du=o0(1/x)
0

1=8 cum@/u) g, — 2
[ e du=0(1/x?),
s

and

fl e/ gy = —1/x + 0(1/x?).
1-5
Therefore X3, x"/n" - —1 when x = —oo0.

Also solved by P. F. Byrd, M. L. Glasser, J. E. Jamison and C. C. Rousseau, O. P. Lossers (The Netherlands),
L. E. Mattics, W. A. Newcomb, O. G. Ruehr, M. El-Tohami, and the proposer.

Equations Forcing Commutativity

E 2931 [1982, 131]. Proposed by Chen-Te Yen, Chung Yuan Christian University, Chung-Li,
Taiwan.

Let n,m be fixed positive integers. Suppose G is a group such that for all x,y in G,
(xp)" = x"y", ()"t = x"Tmyntmoand (xp)" M = x"t2myn*tim Show that G is abelian if
m =1 or 2. What about m > 3?

Solution by 1. N. Herstein, University of Chicago, and Rony Teitler, Wolfson College, Oxford,
England. The solvers call attention to F. W. Levi, Notes on group theory, J. Indian Math. Soc. 8,
(1944) 1-9.

THEOREM (Levi). If (xy)" = x"y" for all x, y in a group G and all n in a set S of integers, then
G is forced to be commutative if and only if ged{n® — n, n € S} is 2. (See also this MONTHLY,
E24115 1974, 410.)

Teitler referred also to Ronse, Teitler, Groupes dans lesquels |’ élévation & une puissance entiére
est un endomorphisme, Bull. Acad. Roy. Belg. Se sér., 62 (1976) 539-564.
Teitler proved also the following results, which he believes to be new.

1. If G is a group in which the maps x = ¢(x), x = x¢(x), x = x2p(x) are endomorphisms
of G, then G is abelian.
2.If x = ¢(x), x > x%(x), x = x*(x) are endomorphisms, then G is abelian.

Proof of 1. Set B(x) = x¢(x). From B(xy)= B(x)B(y) it follows that xy¢(x)d(y) =
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440 PROBLEMS AND SOLUTIONS [August-September
x¢(x)yo(y), so that yo(x) = ¢(x)y, and ¢(x) must always lie in the center of G.
Define T'(x) = x%¢(x) = xB(x). Then x¢(x) is in the center. Thus x is in the center.

Proof of 2. Set B(x) = x%(x). Then B(xy) = B(x)B(y) gives (xy)’¢(x)d(y) =
x%¢(x) y*$(y), so that

(*) yod(x) = x¢(x)y>.
Set T'(x) = x*b(x) = x*B(x). Then yxyB(x) = xB(x)y?, so that
(**) yayxPp(x) = xx’¢(x)y?.

From (*) (with y = x), x%¢(x) = ¢(x)x? for all x in G.
Next invert the left-hand side, right-hand side, of (*) and multiply by (**).

o (x) () ) x%(x) =y 2 (x) x e (x) %

But ¢(x) commutes with x?, so that
X2 =y 222,
Thus squares commute. Now set x = 2 in (*): yr2yé(1)* = t?¢(1)*y?, so that
ytry =r’y?, oyt =1y

Thus the square 2 of every element ¢ is in the center of G.(*) can now be simplified to xy = yx,
so that G is abelian.

F. W. Barnes rediscovered Levi’s Theorem. G. P. Wene mentioned H. E. Bell, The identity (xy)" = x"y": does it
buy commutativity?, Math. Mag., 55 (1982) 165-169.

Also solved by A. Bager (Denmark), F. W. Barnes (Kenya), M. Bencze (Romania), S. D. Bronn, P. L. Chabot,
C.-N. Lee (student), L. Kuipers (Switzerland), J. J. Martinez, D. McCevitt (student), E. T. Ordman, G. P. Wene, D.
Wiedemann, and E. T. Wong,

ADVANCED PROBLEMS

Solutions of these Advanced Problems should be mailed in duplicate to Professor G. L. Alexanderson,
Department of Mathematics, University of Santa Clara, Santa Clara, CA 95053, by January 31, 1985. The
solver’s full post-office address should be on each sheet.

6463. Proposed by José M. Bayod, Santander, Spain.

Let S € R” be a Lebesgue-measurable set with finite measure u(.S). Assume f: S = R is a
real function that can be decomposed in the following way: f = k - g, with g real, measurable and
bounded (call a = inf g(S) and b = sup g(S)), and % absolutely continuous on [a, b]. Then
prove that f is integrable over S, and

[ r=u(s)n(®) = [*w()p(s 0. c]) ot

6464. Proposed by Roger Cooke, University of Vermont.

What is the least upper bound of real numbers b such that there exists a continuous real-valued
function f(x) satisfying

xf(x) - flx(f(t) +1(f(1))") dt - b(In(x)) > 00 as x = o0?

6465. Proposed by F. S. Cater, Portland State University.

Prove that for each integer n > 3, there is a largest number h, such that there exists a
polynomial p of degree at most n which increases on the interval (—#h,,h,) and satisfies
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