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 440 PROBLEMS AND SOLUTIONS [August-September

 x0(x)y0(y), so that yp(x) = O(x)y, and O(x) must always lie in the center of G.
 Define F(x) = x2+(x) = xB(x). Then x+(x) is in the center. Thus x is in the center.

 Proof of 2. Set B(x) = X2+(x). Then B(xy) = B(x)B(y) gives (xy)2 (x)4(y)=
 x2P(x)y2?(y), so that

 (*) yXy (X) = Xkp(X)y2.
 Set F(x) = X4+(X) = x2B(x). Then yxyB(x) = xB(x)y2, so that

 (* *) yXyX20(x) = XX20(X)y2.

 From (*) (with y = x), x20(x) = 4(x)x2 for all x in G.
 Next invert the left-hand side, right-hand side, of (*) and multiply by (**).

 (X)-(yxy)-1(y_y)X2+(X) = y-20(X)> X-1XX20(x)y2

 But O(x) commutes with x2, so that
 2 -2 2 2

 X =) XY.
 Thus squares commute. Now set x t2 in (*): yt2yP(t)2 = t20(t)2y2, so that

 Yt2y= t2y2, yt2 =t2y
 Thus the square t2 of every element t is in the center of G. (*) can now be simplified to X^y yx,
 so that G is abelian.

 F. W. Barnes rediscovered Levi's Theorem. G. P. Wene mentioned H. E. Bell, The identity (xy ) x "y ": does it
 buy commutativity?, Math. Mag., 55 (1982) 165-169.

 Also solved by A. Bager (Denmark), F. W. Barnes (Kenya), M. Bencze (Romania), S. D. Bronn, P. L. Chabot,
 C.-N. Lee (student), L. Kuipers (Switzerland), J. J. Martinez, D. McCevitt (student), E. T. Ordman, G. P. Wene, D.
 Wiedemann, and E. T. Wong.

 ADVANCED PROBLEMS

 Solutions of these Advanced Problems should be mailed in duplicate to Professor G. L Alexanderson,

 Department of Mathematics, University of Santa Clara, Santa Clara, CA 95053, by January 31, 1985. The
 solver's full post-office address should be on each sheet.

 6463. Proposed by Jose M. Bayod, Santander, Spain.

 Let S c Rn be a Lebesgue-measurable set with finite measure ,u(S). Assume f: S -+ R is a
 real function that can be decomposed in the following way: f = h - g, with g real, measurable and
 bounded (call a = inf g(S) and b = sup g(S)), and h absolutely continuous on [a, b]. Then

 prove that f is integrable over S, and

 |ff =p45 -)h(b)'[a, t]) dt.

 6464. Proposed by Roger Cooke, University of Vermont.

 What is the least upper bound of real numbers b such that there exists a continuous real-valued

 function f(x) satisfying

 xf(x) - f(f(t) + t(f(t))2) dt - b(ln(x)) -X oc as x -4 oo?

 6465. Proposed by F. S. Cater, Portland State University.

 Prove that for each integer n > 3, there is a largest number h n such that there exists a
 polynomial p of degree at most n which increases on the interval (- h, ,h,,) and satisfies
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