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 800 PROBLEMS AND SOLUTIONS [September

 T may be constructed as follows, Let Dn be the subset of D consisting of
 n-element subsets of (0, 1); Dn may be mapped one-to-one into (0, 1) by writing
 each s = { a,, a2, *, an} in ascending order, writing each ak as a decimal ex-
 pansion (terminating if possible) ak= al,ka2,k, * * * , and then letting 5(s)
 = *a ,aai,2 * ' , aj,na2,ja2,2 8 - - . 5 is then one-to-one into (0, 1), in general not
 onto. We now introduce polar coordinates into the plane; (r, a) is the point a
 radians from the axis on the circle of radius r. Define T(s) = (1/n, 8(s)) for
 szDn; T is then one-to-one and eventually inside each circle of radius 1/n,
 so T converges to zero.

 Also solved by Ethan Akin, M. M. Chawla (India), Michael Edelstein, Hewitt Kenyon, J. R.
 Porter, and the proposers.

 Editorial Note. As indicated by Chawla, the problermt may also be resolved by the use of
 Theorem 6, p. 71 in J. L. Kelley, General Topology.

 As posed originally, the problem asked for exactly one liriit point, which admits the trivial
 example { (- 1)?} whose range is { -1, 1 } and has no limit points. Happily the problem was
 accepted by the solvers as intended by the proposers.

 The Torsion Subgroup of an Infinite Abelian Group

 5223 [1964, 802]. Proposed by C. R. MacCluer, University of Michigan

 Let L be the additive Abelian group of all oo -tuples (a,, a2, * ) where the
 nth entry is drawn from the integers modulo pn, p a fixed prime, and let addi-
 tion in L be coordinate-wise. Let G be the torsion subgroup and H the subgroup
 of all elements that have almost all zero entries. Show that H is not a direct
 sumrvand of G. (This provides an example showing that purity of H does not
 imply that H is a direct summand even in the torsion case.)

 Solution by Victor Keiser, University of Colorado. Let -(al, a2, ) EG.
 Since g has finite order, almost all entries satisfy (ai, p) =p. For all such ai the
 equation px =-a has a solution, say hi. Let hi=(hi, h2, * *) where hi is the solu-
 tion of pxi =ai if it exists and hi = 0 otherwise. Then (g-pi) CEH because almost
 all its entries are zero. Thus p(H+h) =H+g, so we see that G/H is divisible.

 Now suppose that H is a direct summand of G, say G -!I S. Then S_G/H,
 so S must be divisible. But every element of piS has a zero in the -ith position, so
 piSsS for some i. Hence S is not divisible.

 Also solved by D. 2. Djokovi6 (Yugoslavia), Jack R. Porter, Burnett R. Toskey, and the
 proposer.

 Representation of a Legendre Sum

 5224 [1964, 802 ]. Proposed by L. Carlitz, Duke University

 Let {f(a) = (alp), the Legendre symbol. Show that if abcd #0 (mod p),

 P-1

 S = E t V(ax2 + by2 + CZ- 2dxyz) - p{fp(a) + i&(b) + Ap(c) + ik(-abc)}.
 x,#,z-O
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